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1 Formulas

Assume that we fit to a set of data a generalized linear model with P parameters
β = (β1, . . . , βP )T to a set of data with N data points. We will denote the Y –
value for the ith data point as Yi, we will denote the jth X–value for the ith
data point as Xij , we will denote the conditional mean for the ith data point
as µi, and we will denote its link function as ηi. The overall mean is defined as

M = N−1
N∑

i=1

µi , (1)

and its derivative with respect to the jth parameter is

Gj =
∂M

∂βj
= N−1

N∑

i=1

∂µi

∂ηi
Xij , (2)

and the derivative of its log with respect to the jth parameter is

Γj =
∂

∂βj
log(M) =

(
N∑

i=1

µi

)−1 N∑

i=1

∂µi

∂ηi
Xij . (3)

Note that, except in the trivial case of a linear link function (such as the familiar
identity link), these gradients are not the gradients arrived at by setting all the
X-variates to their sample means.

To define confidence intervals for M and log(M), we define the P -column row
vectors G and Γ by (2) and (3) respectively, denote by Cov(β) the covariance
matrix of the vector parameter β, and we then have the estimates

Var (M) = GCov(β)GT , Var [log(M)] = ΓCov(β)ΓT , (4)

and calculate standard errors and symmetric confidence limits in the usual man-
ner, possibly exponentiating these confidence limits in the case of log(M) to
derive asymmetric confidence limits for M .
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To compare expected overall means under different scenarios, we usually
want to estimate either their differences or their ratios. Using out–of–sample
prediction, we can fantasize that, under “Scenario ∗”, we have a sample of N∗

observations, and their hypothesized X–values are denoted X∗
ij for the jth X–

variate in the ith observation, and their hypothesized expected Y –values and
their link functions (assuming the same β as before) are denoted µ∗i and η∗i ,
respectively, for the ith observation. The overall scenario mean is then

M∗ = N∗−1
N∗∑

i=1

µ∗i , (5)

and we can define vectors G∗ and Γ∗ analogously to (2) and (3), respectively, and
define confidence intervals for M∗ and its log using formulas similar to (4). For
a second scenario, denoted “Scenario ∗∗”, we might similarly assume a sample
size of N∗∗, define X–values X∗∗

ij , expected Y –values µ∗∗i , link functions η∗∗i , an
overall scenario mean M∗∗, and gradient vectors G∗∗ and Γ∗∗. The difference
M∗ −M∗∗ between the expected overall means under the two scenarios has a
variance estimated as

Var (M∗ −M∗∗) = (G∗ −G∗∗) Cov(β) (G∗ −G∗∗)T
, (6)

and the corresponding log ratio log(M∗/M∗∗) has a variance estimated as

Var [log (M∗/M∗∗)] = (Γ∗ − Γ∗∗)Cov(β) (Γ∗ − Γ∗∗)T
. (7)

We can therefore calculate standard errors and confidence limits for the scenario
difference M∗ −M∗∗, and for the log scenario ratio log(M∗/M∗∗), in the usual
manner, and define asymmetric confidence limits for M∗/M∗∗.

An important special case of the scenario ratio is the population unattributable
fraction, which is subtracted from one to define the population attributable frac-
tion. In the case of a cohort study, “Scenario *” might represent a hypothetical
version of our cohort if they were all non–smokers and were the same in all
other respects, and “Scenario **” might represent the cohort we actually have.
In the case of a case–control study, “Scenario **” might represent the controls
in our sample (assumed to represent the population at large because of the rare-
disease assumption), and “Scenario *” might represent a hypothetical sample
who are all non–smokers, but who are like the controls in our sample in all other
respects. For further information on these examples, see Bruzzi et al. (1985)
and Greenland and Drescher (1993).
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