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Abstract. The powercal package can compute any one of the 5 quantities involved
in power calculations from the other 4. These quantities are power, significance
level, detectable difference, sample number, and the standard deviation (SD) of the
influence function, which is equal to the standard error multiplied by the square
root of the sample number. powercal can take arbitrary expressions (involving
constants and/or scalars and/or variables) as input, and calculates the output as a
new variable. The user can therefore plot input variables against output variables,
and this often communicates the tradeoffs involved better than a point calculation
as output by the sampsi command. General formulas are given for calculating the
SD of the influence function when the detectable difference is a linear combina-
tion of link functions of subpopulation means for an outcome variable distributed
according to a generalized linear model (GLM). This general case includes a very
broad range of special cases, where the parameters to be estimated are differences
between subpopulation proportions, arithmetic means and algebraic means, or ra-
tios between subpopulation proportions, arithmetic means, geometric means and
odds. However, powercal is not limited to GLMs, and can even be used with rank
methods.

Keywords: st0001, power, alpha, significance level, detectable difference, de-
tectable ratio, sample number, standard deviation, influence function, sample
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1 Introduction

When statisticians are not making their living producing confidence intervals and p-
values, they are often producing power calculations, or urging their colleagues to involve
them at the design stage, so that they can produce power calculations. The traditional
tool for doing this in Stata is sampsi, which has several limitations. First, sampsi can
only output power and sample size, and requires the detectable difference and desired
significance level to be input. Second, it is only designed to output power and sample
size for a limited range of parameters (differences between subpopulation means and
proportions) for a limited range of designs (sampling in parallel from two or fewer
populations). Third, sampsi outputs only point calculations, and does not produce
plotted power curves, which often communicate the tradeoffs involved better than point
calculations.

Because of these limitations, I wrote the powercal package, which is a low-level
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programming tool for calculating any of the 5 quantities involved in power calculations.
These quantities are power, significance level, detectable difference, number of sample
units, and the standard deviation (SD) of the per-unit influence function, defined as the
standard error multiplied by the square root of the number of sampling units. Each one
of these 5 quantities can be calculated as output from the other 4 as input. The input
quantities can be specified by the user as expressions involving constants and/or scalars
and/or variables, and the output quantity is calculated as a new variable. The user can
therefore list and plot the input and output variables used by powercal. Detectable
differences are defined very broadly, and may be logarithms of ratio parameters or other
transformed parameters. Sample units are also defined very broadly, and each unit may
be a cluster, or a set of primary units sampled in a defined ratio from subpopulations.

powercal is therefore a very comprehensive package. The price of its general use-
fulness is that the user may need to know some formulas, especially to calculate the
SD of the influence function. However, this article also gives a guide to the derivation
of such formulas. These usually follow a standard pattern, especially if the differences
to be estimated are linear combinations of parameters from generalized linear models
(GLMs). However, the usefulness of powercal is not limited to GLMs, and extends
to other statistics for which a Central Limit Theorem applies, including many rank
statistics.

2 The powercal package

2.1 syntax

powercal newvarname
[
if exp

] [
in range

]
,

[
nunit(expression 1)

power(expression 2) alpha(expression 3) delta(expression 4)

sdinf(expression 5) tdf(expression 6) noceiling float
]

2.2 Description

powercal performs generalized power calculations, storing the result in a new variable
with a name specified by newvarname. All except one of the expression options nunit(),
power(), alpha(), delta() and sdinf() must be specified. The single unspecified
option in this list specifies whether the output variable is the number of sampling units,
power, alpha (significance level), delta (difference in parameter value to be detected),
or the standard deviation (SD) of the influence function. Any of these 5 quantities
can be calculated from the other 4. powercal can be used to calculate any of these
quantities, assuming that we are testing a hypothesis that a parameter is zero, and that
the true value is given by delta(), and that the sample statistic is distributed around
the population parameter in such a way that the pivotal quantity

PQ = sqrt(nunits) * (delta/sdinf)
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has a standard Normal distribution (if tdf() is not specified) or a t-distribution with
tdf() degrees of freedom (if tdf() is specified). The formulas used by powercal define
power as the probability of detecting a difference in the right direction, using a two-tailed
test.

2.3 Options

nunit(expression 1) gives an expression whose value is the number of independent sam-
pling units. Sampling units are defined very generally. For instance, in an experiment
involving equal-sized samples of individuals from Population A and Population B,
a sampling unit might be a pair of sampled individuals, one from each population.
Similarly, in a case-control study with 4 controls per case, a sampling unit might be
a case together with 4 controls.

power(expression 2) gives an expression whose value is the power to detect a difference
specified by the delta() option (see below). The power is defined as the probability
that the sample difference is in the correct direction, and also large enough to be
significant, using a 2-tailed test, at the level specified by the alpha() option (see
below).

alpha(expression 3) gives an expression whose value is the size, or significance level, of
the statistical test (in units of probability, not percentage).

delta(expression 4) gives an expression whose value is the true population difference
to be detected. This difference is assumed to be positive. Therefore, if the user
wishes to detect a negative difference, then s/he should specify an expression equal
to minus that difference. The difference may be the log of a ratio parameter, such
as an odds ratio, rate ratio, risk ratio or ratio of geometric means.

sdinf(expression 5) gives an expression whose value is the SD of the influence function.
That is to say, it is an expression equal to the expected standard error of the sample
difference multiplied by the square root of the number of sampling units, where
sampling units are defined generally, as specified in the option nunit(). In the
simple case of a paired t-test, sdinf() is the SD of the paired differences. More
generally, sdinf() can be defined by calculating a standard error for a particular
number of units, from a pilot study, from a simulation or from a formula, and
multiplying this standard error by the square root of the number of units in the
pilot study, simulation or formula.

tdf(expression 6) gives an expression whose value is the degrees of freedom of the t-
distribution to be assumed for the pivotal quantity PQ specified above. The degrees
of freedom expression is not necessarily integer-valued. If tdf() is absent, then PQ
is assumed to follow a standard Normal distribution.

noceiling specifies that, if the output variable specified by newvarname is a number
of units, then it will not be rounded up to the lowest integer no less than itself
(as calculated by the Stata 8 ceil() function). This option can be useful if the
output variable is intended to specify an amount of exposure, such as a number of
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person-years, and the input sdinf() expression specifies a standard deviation of the
influence function per unit exposure. If noceiling is not specified, and power(),
alpha(), delta() and sdinf() are specified, then powercal rounds up the output
variable, so that it contains a whole number of units

float specifies that the output variable will have a storage type no higher than float.
If float is not specified, then powercal creates the output variable with storage
type double. Whether or not float is specified, powercal compresses the output
variable as much as possible without loss of precision. (See help for compress.)

3 Methods and formulas

Generalized power and sample size calculation formulas are based on the Central Limit
Theorem applied to influence functions. Suppose that a sequence of (scalar or vector)
random variables {Xi} is sampled independently from a common (univariate or multi-
variate) population distribution, and suppose that θ(F ) is a (scalar or vector) parameter,
defined from the set of candidate (univariate or multivariate) cumulative distribution
functions F that might apply to the Xi. Denote by F̂n the sample cumulative distri-
bution function, based on the first n of the Xi, and define θ̂n = θ(F̂n) to be a sample
estimator of θ(F0), where F0 is the true population cumulative distribution function of
the Xi. An influence function Υ(X; θ, F ) is a function, defined for each possible X-
value, parameter value and cumulative distribution function, and having the properties
that

E [Υ (Xi; θ(F0), F0)] = 0 (1)

and

θ̂n = θ(F0) + n−1
n∑

i=1

Υ(Xi; θ(F0), F0) + op(n−1/2) (2)

where E[·] denotes expectation, and op(n−1/2) is a term having the property that
op(n−1/2)/n−1/2 converges in probability to zero. Therefore, in words, the sample
statistic is equal to the population parameter, plus the sample mean of the population
influence function, plus a third term, which is negligible if the sample size is sufficiently
large. (In the simplest case, where the Xi are scalar random variables, θ is their popu-
lation mean and θ̂n is the sample mean for the first n of the Xi, the influence function
is Υ(X; θ, F ) = X − θ.)

Influence functions with properties (1) and (2) exist for a wide range of parame-
ters, including those estimated by maximum likelihood (whether or not the likelihood
function is correctly specified). They are the reason why the Central Limit Theorem
can be generalized from sample means to more general sample statistics. More details
about the theory, and more rigorous definitions of influence functions, can be found in
Hampel (1974), Hampel et al. (1986) and Huber (1981). However, for power calculation
purposes, the main consequences of properties (1) and (2) are that, for a wide range of
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parameter estimates θ̂n, the quantity

Zn =
n1/2

σ

[
θ̂n − θ(F0)

]
=

[
θ̂n − θ(F0)

]
/SE(θ̂n) (3)

has an asymptotic standard Normal distribution, where

σ = E
[
Υ(Xi; θ(F0), F0)

2
]1/2

(4)

is the population standard deviation (SD) of the population influence function, and

SE(θ̂n) = σ/
√

n (5)

is known as the asymptotic standard error. In the simplest case of estimating the
population mean of scalar Xi by the sample mean, σ is simply the population SD of the
Xi. However, in the more general case, if we have a formula or estimate for SE(θ̂n) for
known n, then we can multiply that formula or estimate by

√
n to derive a formula or

estimate for σ.

In practice, when calculating confidence intervals and p-values, we usually estimate
σ with a consistent estimator σ̂n, calculated from the first n of the Xi, and calculate an
estimated standard error ŜE(θ̂n) = σ̂n/

√
n, and then the quantity

Ẑn =
n1/2

σ̂n

[
θ̂n − θ(F0)

]
=

[
θ̂n − θ(F0)

]
/ŜE(θ̂n) (6)

is a consistent estimator of Zn and has an asymptotic standard Normal distribution.
Sometimes, the distribution of Ẑn for finite n can be approximated better by a t-
distribution with finite degrees of freedom, which may or may not be integer.

Most power and sample size calculations aim to calculate power and sample size to
detect a non-zero value for a population difference parameter δ, estimated by a sample
difference statistic δ̂, by showing that the confidence limits for the population δ exclude
zero. (Note that a difference may be a log ratio or other difference between parameter
values transformed by a Normalizing and/or variance-stabilizing transformation.) In
the following formulas, we will assume that a significance threshold α is used to define
100(1 − α)% confidence intervals, or to reject the null hypothesis δ = 0 with p ≤ α. If
the number of sampling units is n and the SD of the influence function is σ, then the
standard error of δ̂ is SE(δ̂) = σ/

√
n, and the pivotal quantity

Z = (δ̂ − δ)/SE(δ̂) = n1/2(δ̂ − δ)/σ (7)

is assumed to be distributed with a cumulative density function G(·) such that, for any
z,

G(z) = Pr(Z ≤ z) = Pr(Z < z) = 1−G(−z) (8)

The first equality is a definition, the second equality specifies a continuous distribution,
and the third equality specifies that the distribution is symmetrical around zero. These
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conditions hold whether G(·) specifies a standard Normal distribution or a central t-
distribution. If G−1(·) is the inverse of G(·), then a 100(1 − α)% confidence interval
for δ is defined (approximately) by δ̂ ±G−1(1− α/2)× SE(δ̂), and the null hypothesis
δ = 0 is rejected in a positive direction by a two-tailed test at p ≤ α if and only if
Z ≥ G−1(1−α/2). (We are assuming that, if the standard error is estimated, then it is
estimated well, so that the Ẑn of (6) is a good approximation to the Zn of (3).) If the
power to detect a positive difference δ is no less than a required level γ, then it follows
that

γ ≤ Pr
[
δ̂/SE(δ̂) ≥ G−1(1− α/2)

]

= Pr
[
δ̂/SE(δ̂)− δ/SE(δ̂) ≥ G−1(1− α/2)− δ/SE(δ̂)

]

= 1−G
[
G−1(1− α/2) − δ/SE(δ̂)

]

= G
[
δ/SE(δ̂) − G−1(1− α/2)

]
(9)

The first inequality is a requirement, the first equality follows trivially, the second
equality follows from the fact that G(·) specifies a continuous distribution for Z, and
the third equality follows from the symmetry of that distribution around zero. Applying
G−1(·) to both sides of the inequality (9), we have

G−1(γ) ≤ δ/SE(δ̂) −G−1(1− α/2) (10)

or, equivalently,
δ
√

n

σ
≥ G−1(γ) + G−1(1− α/2) (11)

The inequality (11) expresses the power requirements elegantly and briefly, as the left
hand side is increasing in δ and n and decreasing in σ, and the right hand side is the sum
of two terms, the first increasing in γ and the second decreasing in α. We can therefore
rearrange (11) to derive a minimum or maximum value for each of the 5 parameters
γ, α, δ, σ and n, compatible with the power requirements (9) and with given values of
the other 4 parameters. These minima or maxima may or may not exist for γ and α in
the interval (0, 1) and positive δ, σ and n, because the inequality (11) may be satisfied
nowhere or everywhere in the open interval parameter range. If we define the quantities

R = G−1(γ) + G−1(1− α/2) and S = δ
√

n/σ − G−1(γ) (12)

then the minima and maxima are defined as follows:

γmax = G
[
δ
√

n/σ − G−1(1− α/2)
]

αmin = 2G(−S) (if S > 0)
δmin = σ√

n
R (if R > 0)

σmax = δ
√

n/R (if R > 0)
nmin =

⌈(
σ
δ R

)2
⌉

(if R > 0)

(13)

The operator dxe represents the minimum integer no less than x, as calculated by
the ceil() function in Stata 8. This operator is not applied if the user specifies the
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noceiling option. The inequality (11) is not satisfied by any α ∈ (0, 1) if S ≤ 0, and
is satisfied by all positive δ, σ and n if R ≤ 0. Note that R ≤ 0 can only be true if
γ ≤ 1/2, and that S ≤ 0 can only be true if δ represents fewer standard errors than
G−1(γ). In practice, we usually aim for more than 50% power to detect an interesting
positive population difference, and we usually choose a sample size large enough to make
the standard error small enough to prevent the sample difference from being negative
even when the population difference is positive enough to be interesting.

3.1 Formulas for the SD of the influence function

The parameter σ is usually an input parameter, provided by the user. It may be
estimated by multiplying a standard error from a pilot study, a simulation or a formula
by the square root of the number of sampling units involved in calculating that standard
error. In the absence of a pilot study or a simulation, a formula is usually known only
for the simplest cases. For instance, in the case of a paired t-test, or a sign test, the SD
of the influence function is simply the SD of the pairwise differences, or of the signs of
these differences, respectively.

However, many experimental designs involve sampling in parallel and independently
from K subpopulations of primary sampling units (PSUs), estimating a population
parameter ηj for the jth subpopulation by means of a sample estimate η̂j , and thereby
estimating a contrast of interest

δ =
K∑

j=1

ajηj − ω (14)

where ω and the aj are constants. The contrast δ is assumed to be zero under a null
hypothesis to be tested, and ω is usually (but not always) zero. Usually, but not always,
the ηj are link functions of subpopulation means in a generalized linear model, as defined
by McCullagh and Nelder (1989). Examples include arithmetic subpopulation means,
log geometric subpopulation means, log subpopulation incidence rates, or log case and
control odds of exposure in an unmatched case-control study.

A sample for such a design may contain a number n of compound sampling units
(CSUs), where each CSU consists of mj PSUs sampled independently from each jth
subpopulation. (For instance, an unmatched case-control study may have a fixed num-
ber of controls per case, and then K = 2, a1 = 1, a2 = −1, m1 = 1, and m2 is the
number of controls per case.) Sample size calculations for such designs usually output
or input numbers of CSUs, rather than numbers of PSUs. The estimate for δ is

δ̂ =
K∑

j=1

aj η̂j − ω (15)

The standard error of η̂j is
SE (η̂j) = σj/

√
nmj (16)
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where σj is the SD of the influence function (per PSU) of ηj . If ηj is a link function in
a generalized linear model, and there is one observation per PSU, then the SD of the
per-PSU influence function is equal to

σj =
dηj

dµj

√
φV (µj) (17)

where, in the notation of McCullagh and Nelder (1989), µj is the subpopulation mean
corresponding to ηj , V (µj) is the variance function, and φ is the dispersion parameter.
The standard error of δ̂ is

SE
(
δ̂
)

=

√√√√
K∑

j=1

a2
j [SE (η̂j)]

2 (18)

It follows that the SD of the per-CSU influence function of δ is derived from the SDs of
the per-PSU influence functions of the ηj by the formula

σ =
√

n× SE
(
δ̂
)

=

√√√√
K∑

j=1

a2
j

mj
σ2

j (19)

Table 1: Some commonly used link functions for generalized linear models.
Link function η(µ) dη/dµ Interpretation of η
Identity µ 1 Arithmetic mean of Y
Power r 6= 0 µr rµr−1 Power-1/r algebraic mean of Y r

Log ln(µ) 1/µ Log arithmetic mean of Y
Logit ln [µ/(1− µ)] 1/µ + 1/(1− µ) Log odds of binary Y

Table 2: Some commonly used variance functions for generalized linear models.
Family V (µ) Interpretation of φ
Normal 1 Variance
Gamma µ2 Squared coefficient of variation
Bernoulli µ(1− µ) Always 1
Poisson µ Variance/mean ratio

Table 1 gives some commonly used link functions for generalized linear models, with
formulas for the link function η as a function of a subpopulation mean µ of a variable Y
and for its derivative for use in Equation (17), and interpretations in words for the link
η. Table 2 gives some commonly used variance functions for generalized linear models,
which assume that the variance of a subpopulation with mean µ is equal to φV (µ),
together with an interpretation in words of the dispersion parameter φ. Each variance
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Table 3: Standard deviations of influence functions for some variance-link combinations.
Family Link σj Typical interpretation of δ
Normal Identity

√
φ Difference between arithmetic means

Normal Log
√

φ/µj Log ratio between arithmetic means
Gamma Identity µj

√
φ Difference between arithmetic means

Gamma Log
√

φ Log ratio between arithmetic means
Poisson Identity

√
φµj Difference between incidence rates

Poisson Log
√

φ/µj Log ratio between incidence rates
Bernoulli Identity

√
µj(1− µj) Difference between proportions

Bernoulli Log
√

(1− µj)/µj Log ratio between proportions
Bernoulli Logit

√
1/µj + 1/(1− µj) Log ratio between odds

function applies to a distributional family, from which it derives its name. There are
many other possible link functions and variance functions, and more comprehensive
tables can be found in the Appendices of Hardin and Hilbe (2001).

Table 3 gives formulas for the SD of the influence function for the jth subpopulation
derived according to Equation (17) for some common combinations of variance and link
functions. The σj can be entered into Equation (19) to derive a SD of the per-CSU
influence function for the contrast δ of (14), whose typical informal interpretation in
words is given in the right-hand column. Again, there are many more possible combina-
tions, some of which are mentioned in Hardin and Hilbe (2001). In particular, we may
plan to transform the outcome data prior to analysis. If we use the log transformation
and a generalized linear model with the identity link, then the parameter δ will be a
log ratio between geometric means, or (in other words) a difference between arithmetic
mean logs. If we use a power-r transformation and a generalized linear model with the
power-1/r link, then δ will be a difference between power-r algebraic means, where the
power-r algebraic mean of a variable Y is defined as [E(Y r)]1/r. Note that these links
can be combined with any variance function.

4 Examples

The examples in the help file for powercal are designed to work both under Stata 7 and
under Stata 8, and are described in detail in the Adobe Acrobat manual powercal.pdf,
distributed with the powercal package. In this paper, we give more advanced examples,
demonstrating the power of Stata 8 graphics.

4.1 Example 1. Geometric mean ratios

The geometric mean (defined as the antilogarithm of the arithmetic mean logarithm)
is frequently used as an approximation to the median if a variable is positive-valued
and positively skewed. Power calculations for ratios between geometric means usually
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assume that the outcome variable has a lognormal distribution, so that the log of the
outcome variable has a Normal distribution. Under this assumption, the geometric mean
is the median, its log is the mean log, and the SD of the logs is the other parameter of
the distribution, measuring dispersion. Alternative measures of dispersion for positive-
valued variables, more familiar to non-mathematicians, are the coefficient of variation
(defined as the SD/mean ratio) and the qth tail ratio (defined as the ratio of the 100(1−
q)th percentile to the 100qth percentile if 0 < q < 1/2). If the lognormal assumption is
true, then the SD of the natural logs can be calculated from the coefficient of variation
or the qth tail ratio by the formulas

SDlog =
√

ln
(
CV2 + 1

)
= − ln(rq)/

[
2Φ−1(q)

]
(20)

where SDlog is the SD of the natural logs, CV is the coefficient of variation of the un-
logged variable, rq is the qth tail ratio of the unlogged variable, and Φ−1(·) is the inverse
standard normal cumulative distribution function. (See Aitchison and Brown (1963), or
Stanislav Kolenikov’s website at http://www.komkon.org/˜ tacik/, which contains some
formulas from that source for quick reference.)

When we perform lognormal power calculations, the difference δ that we aim to
detect is usually a linear contrast between logs of geometric means. In the notation
of Subsection 3.1, the log outcomes are distributed according to a generalized linear
model with an identity link function and a Normal variance function, the ηj = µj are
subpopulation arithmetic mean logs (or logs of geometric means), and the dispersion
parameter φ is the variance of the log outcomes, usually assumed to be the same in all
subpopulations. Therefore, from Table 3, the σj are the within-subpopulation SDs of
the log outcomes. We wish to know the SD σ of the influence function of the contrast δ,
so that we can apply the formulas (13). In the simplest case, we may plan to measure
the ratio between geometric means in 2 treatment groups. In this case, we have K = 2,
η1 and η2 are the log geometric means in treatment groups 1 and 2 respectively, a1 = 1,
a2 = −1, and the difference to detect is the log geometric mean ratio δ = η1 − η2.
The PSUs are treated units. If we decide to apply the treatments to 2 unmatched
samples of equal size, then each CSU might be a pair of PSUs, one allocated to each
treatment group, and therefore we have m1 = m2 = 1. If the two treatment groups
have a common coefficient of variation (and therefore common tail ratios), then we also
have σ1 = σ2 = SDlog, where SDlog is derived from the assumed coefficient of variation
or tail ratio by (20). By (19), the SD of the per-CSU influence function of δ is then
given by

σ = SDlog ×
√

2 (21)

The following example assumes a coefficient of variation of 0.5 within each of 2
treatment groups. This implies a 20% tail ratio of 2.2147318, meaning that, within
each treatment group, the bottom of the top quintile is 2.2147318 times the top of the
bottom quintile. The variable logratio is created, containing a range of log geometric
mean ratios, and the variable gmratio is created, containing the corresponding ratios
themselves, which range from 1 to 2. We then use powercal to calculate, in a new
variable power, the power to detect each geometric mean ratio with p ≤ 0.01, using 50
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units in each group (and therefore 50 CSUs) and carrying out a two-sample t-test on
the logs (with 2 × 50 − 2 = 98 degrees of freedom). The power is plotted against the
geometric mean ratio in Figure 1, with vertical-axis reference lines for 80% and 90%
power. We see that a geometric mean ratio of 1.39 can be detected with 80% power,
whereas a geometric mean ratio as high as 1.45 can be detected with 90% power.

. scal cv=0.5

. scal sdlog=sqrt(log(cv*cv + 1))

. scal r20=exp(-2*sdlog*invnorm(0.2))

. disp _n as text "Coefficient of variation: " as result cv ///
> _n as text "SD of logs: " as result sdlog ///
> _n as text "20% tail ratio: " as result r20

Coefficient of variation: .5
SD of logs: .47238073
20% tail ratio: 2.2147318

. set obs 100
obs was 0, now 100

. gene logratio=log(2)*(_n/_N)

. lab var logratio "Log GM ratio"

. gene gmratio=exp(logratio)

. lab var gmratio "GM ratio"

. powercal power, alpha(0.01) delta(logratio) sdinf(sdlog*sqrt(2)) ///
> nunit(50) tdf(98)
Result to be calculated is power in variable: power

. line power gmratio, ///
> yscale(range(0 1)) ///
> ylab(0(0.05)1, grid gmin gmax angle(0)) yline(0.8 0.9, lpattern(shortdash))
> ///
> xscale(log range(1 2)) xlab(1(0.1)2, grid gmin gmax)
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Figure 1: Power to detect geometric mean ratios.

Alternatively, we might wish to calculate the detectable geometric mean ratios closest
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to unity as a function of sample number. The following example does this by creating a
variable npergp, containing possible numbers per group from 1 to 100, and then using
powercal to calculate the detectable positive log geometric mean ratio as a function
of npergp, assuming that we require 90% power to detect a difference with p ≤ 0.01
by t-testing the logs, and that the coefficient of variation within each treatment group
is 0.5 as before. We then calculate the detectable geometric mean ratios greater than
1 and less than 1 as hiratio and loratio, respectively, and plot these against the
number per treatment group, with a vertical-axis reference line indicating a ratio of 1.
This plot is Figure 2. Note that we have suppressed the spectacular ratios detectable
with 4 or fewer subjects per group. A plot such as Figure 2 has the advantage that
it communicates to colleagues the inverse square law, which states that, to halve the
detectable difference, you must approximately quadruple (not double) the number of
subjects. Non-statisticians frequently do not appreciate this law, although they usually
are vaguely aware that larger sample sizes increase power.

. scal cv=0.5

. scal sdlog=sqrt(log(cv*cv + 1))

. scal r20=exp(-2*sdlog*invnorm(0.2))

. disp _n as text "Coefficient of variation: " as result cv ///
> _n as text "SD of logs: " as result sdlog ///
> _n as text "20% tail ratio: " as result r20

Coefficient of variation: .5
SD of logs: .47238073
20% tail ratio: 2.2147318

. set obs 100
obs was 0, now 100

. gene npergp=_n

. lab var npergp "Number per group"

. powercal logratio, power(0.9) alpha(0.01) sdinf(sdlog*sqrt(2)) ///
> nunit(npergp) tdf(2*(npergp-1))
Result to be calculated is delta in variable: logratio

. gene hiratio=exp(logratio)
(1 missing value generated)

. gene loratio=exp(-logratio)
(1 missing value generated)

. lab var hiratio "Detectable GM ratio >1"

. lab var loratio "Detectable GM ratio <1"

. line hiratio loratio npergp if _n>=5, ///
> ylabel(, angle(0) grid gmin gmax) yline(1, lpattern(shortdash)) ///
> ytitle("Detectable GM ratio") ///
> xlab(0(10)100, grid gmin gmax)

4.2 Example 2. Odds ratios from case-control studies

Case-control studies are commonly recommended as the design of choice in genomic
epidemiology for measuring an association between a gene and a disease (see Clayton
and McKeigue (2001)). If we are designing an unmatched case-control study, then we
typically plan to sample a given number of subjects with each possible disease status (eg
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Figure 2: Detectable geometric mean ratios as a function of number per treatment
group.

“with the disease” and “without the disease”), and then measure, in each subject, the
exposure, which might be the presence of a genetic pattern in a patient. The difference
δ that we wish to detect is the log ratio of the odds of the exposure between cases and
controls, or possibly some other linear contrast of the log odds of exposure for different
disease status values, if there are more than 2 possible disease status values. If there are
K possible values of disease status, and Ej is the prevalence of exposure in subjects with
the jth disease status, then the odds of exposure in the jth disease category is defined as
Ej/(1−Ej), and its logarithm is typically used as a normalizing and variance-stabilizing
transformation.

In the generalized linear model notation of Subsection 3.1, the PSUs are subjects
(cases or controls), the subpopulations correspond to the possible disease status values,
and the “outcome” variable is a binary exposure variable, whose distribution in each
subpopulation is governed by a generalized linear model with a logit link function and
a Bernoulli variance function. The mean “outcome” in the jth subpopulation is there-
fore µj = Ej , the link function for the jth subpopulation is ηj = ln [µj/(1− µj)], its
derivative is dηj/dµj = 1/µj + 1/(1− µj), the variance function is V (µj) = µj(1− µj),
and the dispersion parameter is φ = 1. From the bottom row of Table 3, the SD of the
per-PSU influence function of the log odds ηj is

σj =
√

1/Ej + 1/(1− Ej) (22)

A CSU in this case is composed of mj subjects sampled independently from the subpop-
ulation with each jth disease status. This is because, although the case-control study
is unmatched, we may plan to sample subjects of different disease status according to
a particular ratio, such as two controls per case. The SD of the per-CSU influence
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function is then given by the formula (19). Note that, in the sample size calculations,
the generalized linear model is defined with the disease status as the “predictor” and
the exposure status as the “outcome”. This is in contrast to the statistical analysis,
where the disease status is usually the “outcome” and the exposure status is usually
the “predictor”.

In the simplest case-control studies, there are K = 2 possible values for disease
status, namely “diseased” and “undiseased”, and a CSU is a single case together with
m2 unmatched controls, so that m1 = 1. We are interested in measuring a log odds
ratio δ = η1 − η2, so, in the notation of Subsection 3.1, we have a1 = 1 and a2 = −1.
In this case, the SD of the per-CSU influence function is given, according to (19), by

σ =

√
1

E1
+

1
1− E1

+
1

m2

[
1

E2
+

1
1− E2

]
(23)

When designing a case-control study, we typically have a good prior estimate of the
control exposure prevalence E2, because the control exposure prevalence is intended to
be an estimate for the total population exposure prevalence. Therefore, if we hypothesize
a particular value OR for the odds ratio, then we can multiply this odds ratio by the
“known” control odds of exposure to arrive at the corresponding hypothesized case odds
of exposure by the formula

E1/(1− E1) = OR× E2/(1− E2) (24)

and then calculate the hypothesized case exposure prevalence E1 from the case exposure
odds E1/(1−E1). Note that, if we have an estimate for the control exposure E2, then the
SD of the per-case influence function of the log odds ratio, given by (23), is dependent
on the log odds ratio itself. This is in contrast to the case with lognormal geometric
mean ratios, where σ is independent of δ and is given by (21).

The following example assumes that we are planning a case-control study to measure
the association of a rare disease with a binary exposure, whose control prevalence is
expected to be 0.25, or 25%. We decide to recruit m2 = 2 unmatched controls per case.
We create a data set with 1 observation for each of a range of odds ratios from 1.25 to
5, which will correspond to relative risks of the same size, if the rare disease assumption
is true. The log odds ratios are stored in the variable logor, the odds ratios are stored
in or, the case exposure odds are stored in caseodds, the case exposure prevalences are
stored in caseprev, and the control exposure prevalence and odds are stored in scalars.
We use the formulas (24) and (23) to calculate the SD of the influence function of the
log odds ratio in sdinflor. We then use powercal to calculate the minimum numbers
of cases to detect each odds ratio with 90% power at significance levels p ≤ 0.01 and
p ≤ 0.001, respectively, and plot these odds ratios against those minimum numbers
of cases, suppressing odds ratios which require over 2000 cases to be detectable. The
resulting graph is Figure 3. Note that uninteresting low unadjusted odds ratios are
very expensive to detect, as well as being more credibly attributed to confounding than
spectacular high odds ratios.
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. scal conprev=0.25

. scal conodds=conprev/(1-conprev)

. disp _n as text "Expected control prevalence: " as result conprev ///
> _n as text "Expected control odds: " as result conodds

Expected control prevalence: .25
Expected control odds: .33333333

. set obs 101
obs was 0, now 101

. gene logor=log(1.25)+(log(5)-log(1.25))*(_n-1)/(_N-1)

. gene or=exp(logor)

. gene caseodds=conodds*or

. gene caseprev=caseodds/(1+caseodds)

. gene sdinflor=sqrt( ///
> 1/caseprev + 1/(1-caseprev) + (1/2)*( 1/conprev + 1/(1-conprev) ) ///
> )

. lab var logor "Log odds ratio"

. lab var or "Odds ratio"

. lab var caseodds "Case exposure odds"

. lab var caseprev "Case exposure prevalence"

. lab var sdinflor "SD of influence for log OR"

. desc

Contains data
obs: 101
vars: 5
size: 2,424 (99.8% of memory free)

storage display value
variable name type format label variable label

logor float %9.0g Log odds ratio
or float %9.0g Odds ratio
caseodds float %9.0g Case exposure odds
caseprev float %9.0g Case exposure prevalence
sdinflor float %9.0g SD of influence for log OR

Sorted by:
Note: dataset has changed since last saved

. * Detectable OR by number of cases *

. powercal ncases01, power(0.9) alpha(0.01) delta(logor) sdinf(sdinflor)
Result to be calculated is nunit in variable: ncases01

. powercal ncases001, power(0.9) alpha(0.001) delta(logor) sdinf(sdinflor)
Result to be calculated is nunit in variable: ncases001

. lab var ncases01 "Minimum cases (alpha=0.01)"

. lab var ncases001 "Minimum cases (alpha=0.001)"

. line or ncases01 if ncases01<=2000 || line or ncases001 if ncases001<=2000 ,
> ///
> yscale(log range(1 5)) ylabel(1 1.5 2(1)5, angle(0) grid gmin gmax) ///
> xlab(, grid gmin gmax) xtitle("Minimum number of cases") ///
> legend(label(1 "Alpha=0.01") label(2 "Alpha=0.001"))

Using the same data set, we can also calculate, for each odds ratio, the significance
levels attainable with 50% or 90% power, using 100 cases and their 200 controls. This
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Figure 3: Detectable odds ratios as a function of number of cases.

is done as in the example below, creating Figure 4. Note that the significance level is
plotted on a reverse log scale, so that, the higher a point is, the more convincing is
the significance level that we can expect. Odds ratios between 2 and 3 are likely to be
“significant” at the conventional 5% and 1% levels at 90% power, or at the 0.1% level
with 50% power. However, higher odds ratios are more likely to attain significance levels
that might convince the skeptics, in view of the problems of multiple comparisons and
publication bias. (See Section 35.7 of Kirkwood and Sterne (2003) for a discussion of
these problems and Colhoun et al. (2003) for their importance in genomic epidemiology.)

. * Significance level by odds ratio *

. powercal alpha50, power(0.50) delta(logor) sdinf(sdinflor) nunit(100)
Result to be calculated is alpha in variable: alpha50

. powercal alpha90, power(0.90) delta(logor) sdinf(sdinflor) nunit(100)
Result to be calculated is alpha in variable: alpha90

. line alpha50 or || line alpha90 or, ///
> yscale(log range(1e-9 1) reverse) ///
> ylab(1 0.05 1e-1 1e-2 1e-3 1e-4 1e-5 1e-6 1e-7 1e-8 1e-9, ///
> angle(0) format(%8.2g) grid gmin gmax) ///
> yline(0.05 0.01 0.001, lpattern(shortdash)) ///
> xscale(log) xlab(1 1.25 1.5 2(1)5, grid gmin gmax) ///
> legend(label(1 "Power=0.50") label(2 "Power=0.90"))

4.3 Example 3. Somers’ D and ranksum tests

The methods of the powercal package are not limited to generalized linear models, and
may equally well be used if we plan to analyse the data using rank statistical methods.
For instance, we might want to measure typical differences in blood pressure between
men and women, and we might expect the distribution to be positively skewed and
possibly unequally variable between the sexes. Traditionally, this would be done using



Roger Newson 17

1

.05
.1

.01

.001

.0001

.00001

1.0e−06

1.0e−07

1.0e−08

1.0e−09

M
in

im
u
m

 a
lp

h
a

1 1.25 1.5 2 3 4 5
Odds ratio

Power=0.50 Power=0.90

Figure 4: Significance levels for 50% and 90% power with 100 cases by odds ratio.

a Mann-Whitney-Wilcoxon ranksum test (see [R] ranksum), which produces a p-value
but no confidence interval.

Today, most statisticians would argue that confidence intervals are more informative
than p-values alone, even if rank methods are used. In Newson (2002), it is argued that
there are at least three possible parameters corresponding to the so-called “nonpara-
metric” ranksum test, namely Somers’ D, the Hodges-Lehmann median difference and
the Hodges-Lehmann median ratio, and that confidence intervals can be calculated for
any of them using the somersd package, downloadable from SSC. Somers’ D of blood
pressure with respect to male gender is defined as the difference between two probabili-
ties, namely the probability that a randomly-sampled male has a higher blood pressure
than a randomly-sampled female and the probability that a randomly-sampled female
has a higher blood pressure than a randomly-sampled male. Power formulas are more
easily defined for Somers’ D than for the other two parameters. This is because Somers’
D is closely related to Kendall’s tau and has a very well-behaved influence function, for
which the Central Limit Theorem works very well at low sample numbers, whereas influ-
ence functions for medians are very unpredictable. See Hampel et al. (1986) and Huber
(1981) for discussion on the influence functions of medians, and Kendall and Gibbons
(1990) for discussion of the Central Limit Theorem as applied to Kendall’s tau.

Although Somers’ D is well-behaved, it is difficult to understand for non-statisticians,
who would usually like to be able to convert it to a scale of median differences or
ratios, as this would probably be more useful for making monetary or other practical
decisions. Unfortunately, there is no unique conversion formula. However, if an outcome
variable Y (such as blood pressure) has a Normalizing transformation g(Y ), which is
Normally distributed within each of two subpopulations being compared (such as males
and females), and if g(Y ) has mean µA and variance φA in Population A and has mean
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µB and variance φB in Population B, then the Somers’ D of Y , with respect to a binary
variable X equal to 1 for Population A and 0 for Population B, is given by

DY X = 2Φ
[
(µA − µB)/

√
φA + φB

]
− 1 (25)

where Φ(·) is the standard Normal cumulative distribution function. Under these as-
sumptions, Somers’ D has the same sign as µA − µB , and therefore the same sign as
the Hodges-Lehmann median difference, but the conversion curves between the scales
depend both on the function g(Y ) and on the sum of the subpopulation variances.

As stated in Subsection 3.1, the key to a power calculation formula for a parameter
is a formula for the SD of its influence function. Somers’ D is defined as a ratio of two
U -statistics, in the terminology of Hoeffding (1948). Analytical standard error formulas
can therefore be derived from the theory introduced there and discussed further in
Serfling (1980), subject to making distributional assumptions. However, we will not use
these methods here, but instead use as a pilot study the data set bpwide, distributed
with official Stata, which contains one observation for each of 120 fictional patients and
data on their genders and blood pressures. These blood pressures are in unstated units,
but that is not a problem for us, as Somers’ D is scale-invariant. (See [R] sysuse for more
information about the datasets shipped with official Stata.) Instead of using the SD of
the influence function for Somers’ D itself, we will use the SD of the influence function
for the hyperbolic arctangent (or z-transform) of Somers’ D, as this transformation is
variance-stabilizing, making the SD of the parameter influence function less dependent
on the value of the parameter itself. The formulas are discussed in detail in the manual
somersd.pdf, which is distributed with the somersd package, and is a post-publication
update of Newson (2000).

In the following advanced example, we load the bpwide data and use somersd to-
gether with the parmby program from the parmest package (also downloadable from
SSC and discussed in Newson (2003)). The results from these programs are used to
calculate the SD of the influence function of the z-transformed Somers’ D, for input
into powercal. The variables created by powercal are plotted in Figures 5 and 6.

. sysuse bpwide, clear
(fictional blood-pressure data)

. gene byte male=1-sex

. lab var male "Male patient"

. parmby "somersd male bp_before, tr(z) td", norestore ///
> escal(N) rename(es_1 N)
Command: somersd male bp_before, tr(z) td
Somers’ D with variable: male
Transformation: Fisher’s z
Valid observations: 120
Degrees of freedom: 119

Symmetric 95% CI for transformed Somers’ D

Jackknife
male Coef. Std. Err. t P>|t| [95% Conf. Interval]

bp_before .3086041 .110782 2.79 0.006 .0892446 .5279636
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Asymmetric 95% CI for untransformed Somers’ D
Somers_D Minimum Maximum

bp_before .29916667 .08900846 .4838229

. list N parm estimate stderr min* max* p, clean noobs

N parm estimate stderr min95 max95 p
>

120 bp_before .3086041 .11078202 .08924464 .52796357 .00621746
>

. scal sdinf=stderr[1]*sqrt(N[1])

. disp _n as text "SD of influence function for z-transformed Somers’ D: " ///
> as result sdinf

SD of influence function for z-transformed Somers’ D: 1.2135563

. drop _all

. set obs 1000
obs was 0, now 1000

. gene int npat=_n

. lab var npat "Number of patients"

. foreach X in 05 01 001 0001 {
2. powercal detz‘X’, power(0.9) alpha(0.‘X’) sdinf(sdinf) ///

> nunit(npat) tdf(npat-1)
3. gene detd‘X’=exp(2*detz‘X’)
4. replace detd‘X’=(detd‘X’-1)/(detd‘X’+1)
5. lab var detz‘X’ "z-transformed Somers’ D (P<=0.‘X’)"
6. lab var detd‘X’ "Somers’ D (P<=0.‘X’)"
7. }

Result to be calculated is delta in variable: detz05
(1 missing value generated)
(999 real changes made)
Result to be calculated is delta in variable: detz01
(1 missing value generated)
(998 real changes made)
Result to be calculated is delta in variable: detz001
(2 missing values generated)
(998 real changes made)
Result to be calculated is delta in variable: detz0001
(2 missing values generated)
(997 real changes made)

. line detd* npat, ///
> xlab(0(100)1000, grid gmin gmax) ///
> ylab(0(0.05)1, angle(0) grid gmin gmax) ///
> ytitle("Detectable Somers’ D")

. more

. graph export figseq5.eps, replace
(file figseq5.eps written in EPS format)

. foreach X in 10 15 20 30 {
2. scal z=0.5*log((1+0.‘X’)/(1-0.‘X’))
3. powercal alpha‘X’, power(0.9) delta(z) sdinf(sdinf) ///

> nunit(npat) tdf(npat-1)
4. lab var alpha‘X’ "Alpha (Somers’ D = 0.‘X’)"
5. format alpha‘X’ %8.2g
6. }

Result to be calculated is alpha in variable: alpha10
Result to be calculated is alpha in variable: alpha15
Result to be calculated is alpha in variable: alpha20
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Result to be calculated is alpha in variable: alpha30

. line alpha* npat, ///
> xlab(0(100)1000, grid gmin gmax) ///
> yscale(log reverse) ///
> ylab(1 0.05 0.01 1e-3 1e-4 1e-5 1e-6 1e-7 1e-8 1e-9 1e-10 1e-11, ///
> format(%8.2g) angle(0) grid gmin gmax) ///
> ytitle("Minimum alpha")

. more

. graph export figseq6.eps, replace
(file figseq6.eps written in EPS format)
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Figure 5: Detectable Somers’ D by number of patients for 90% power.

We first load the bpwide data, then add a variable male indicating male gender,
and then use parmby and somersd to estimate Somers’ D and to create a second data
set in memory, with 1 observation and data on the sample number, estimate, standard
error, confidence limits and p-values for the z-transformed Somers’ D. We find that the
untransformed Somers’ D is 0.29916667, so it is about 30% more likely for a man to
have a higher blood pressure than a woman than vice versa. The standard error stored
in the variable stderr is multiplied by the square root of the sample number stored
in the variable N to give the SD of the influence function, which is stored in the scalar
sdinf and equal to 1.2135563 z-units. We then create a third data set in memory, with
1000 observations (one for each possible sample number from 1 to 1000), and a variable
npat, containing the number of patients. Then we use powercal in a loop to add to
this data set 4 new variables detz05, detz01, detz001 and detz0001, containing z-
transformed Somers’ D values detectable with 90% power at p-values 0.05, 0.01, 0.001
and 0.0001, respectively, and use the hyperbolic tangent or inverse z transform to derive
detectable untransformed Somers’ D values in detd05, detd01, detd001 and detd0001,
respectively. These are line-plotted against npat to create Figure 5. After this, we use
powercal in another loop to add to the data set 4 new variables alpha10, alpha15,
alpha20 and alpha30, containing the significance level attainable with 90% power,
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Figure 6: Attainable significance levels by number of patients for 90% power.

assuming population Somers’ D values of 0.10, 0.15, 0.20 and 0.30, respectively. These
are line-plotted against npat in Figure 6. Note that the alpha-values are plotted on a
reverse log ordinate, so that the higher they are, the more statistically significant they
are. The reverse log ordinate makes the attainable alpha-curves very nearly linear in
the number of patients, indicating that the attainable p-value decreases approximately
exponentially as patient numbers (and presumably costs) are increased.
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