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Abstract. Medical researchers frequently make statements that one model pre-
dicts survival better than another, and are frequently challenged to provide rig-
orous statistical justification for these statements. Stata provides the command
estat concordance to calculate the rank parameters Harrell’s c and Somers’ D
as a measure of the ordinal predictive power of a model. However, no confidence
limits or P–values are provided to compare the predictive power of distinct mod-
els. The somersd package, downloadable from SSC, can provide such confidence
intervals, but these should not be taken seriously, if they are calculated in the
dataset in which the model was fitted. Methods are demonstrated for fitting alter-
native models to a training set of data, and then measuring and comparing their
predictive power by using out–of–sample prediction, and somersd, in a test set, to
produce statistically sensible confidence intervals and P–values for the differences
between the predictive powers of different models.
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1 Introduction

Harrell’s c and the equivalent parameter Somers’ D were proposed as measures of the
general predictive power of a general regression model by Harrell et al. (1982) and
Harrell et al. (1996), who focussed attention on the case of a survival model with
a possibly right–censored outcome, interpreted as a lifetime. In the case of a Cox
proportional–hazards regression model, both parameters are output by the Stata post–
estimation command estat concordance (see [ST] stcox postestimation). However,
as Harrell’s c and Somers’ D are rank parameters, they are equally valid as a measure of
the predictive power of any model in which the scalar outcome Y is at least ordinal (with
or without censorship), and in which the conditional distribution of the outcome, given
the predictor variables, is governed by a scalar function of the predictor variables and
the parameters, such as the hazard ratio in a Cox regression, or the linear predictor in
a generalized linear model. If the assumptions of the model are true, then such a scalar
predictive score plays the role of a balancing score, as defined by Rosenbaum and Rubin
(1983).

Harrell’s c and Somers’ D are members of the “Kendall family” of rank parame-
ters, whose family history can be summarized as “Kendall’s τa begat Somers’ D begat
Theil–Sen percentile slopes”. This family is implemented in Stata using the somersd
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package, which can be downloaded from SSC. An overview of the parameter family is
given in Newson (2002), and the methods and formulas are given in detail in Newson
(2006a), Newson (2006b), and Newson (2006c). Parameters in this family are defined by
assuming the existence of a population of bivariate data pairs of the form (Xi, Yi), and
a sampling scheme for sampling pairs of pairs [(Xi, Yi), (Xj , Yj)] from that population.
A pair of pairs is said to be concordant if the larger of the X–values is paired with
the larger of the Y –values, and is said to be discordant if the larger of the X–values
is paired with the smaller of the Y –values. Kendall’s τa is the difference between the
probability of concordance and the probability of discordance, and Somers’D(X |Y ) is
the difference between the corresponding conditional probabilities, assuming that the
two Y –values can be ordered. Harrell’s c(X |Y ) is defined as [D(X |Y ) + 1]/2, and is
equal to the conditional probability of concordance plus half the conditional probabil-
ity that the data pairs are neither concordant nor discordant, assuming that the two
Y –values can be ordered. In the case where Y is an outcome to be predicted by a
multivariate model with a scalar predictive score, there is an underlying population of
multivariate data points (Yi, Vi1, . . . , Vik), where the Vih are predictive covariates, and
the role of the Xi is played by the scalar predictive score η(Vi1, . . . , Vik). In this case,
the Somers’ D and Harrell’s c parameters can be denoted as D[η(V1, . . . , Vk)|Y ] and
c[η(V1, . . . , Vk)|Y ], respectively. If the model is a survival model, then the Y –values are
lifetimes, and there is the possibility that one or both of a pair of Y –values may be
censored, which sometimes implies that they cannot be ordered.

We often want to compare the predictive power of alternative predictors of the same
outcome Y . In Newson (2002) and Newson (2006b), it is argued that, if there is an
underlying population of trivariate data points (Wi, Xi, Yi), and any positive association
between the Yi and the Xi is caused by a positive association of both of these variables
with the Wi, then we must have the inequality D(X |Y )−D(W |Y ) ≤ 0, or (equivalently)
c(X |Y ) − c(W |Y ) = [D(X |Y ) −D(W |Y )]/2 ≤ 0. (This inequality still holds if the Y –
variable may be censored, but not if the W– and/orX–variables may be censored.) This
implies that, if we have multiple alternative positive predictors of the same outcome,
such as alternative predictive scores from alternative multivariate models, then it may
be useful to calculate confidence intervals for the differences between the Somers’ D or
Harrell’s c parameters of these predictors, with respect to the outcome, and then make
statements regarding which predictors may or may not be secondary to which other
predictors. In Stata, this can be done by using lincom after the somersd command, as
demonstrated in Section 4.1 of Newson (2002).

Medical researchers frequently make statements that one model predicts survival
better than another, and are frequently challenged, by statistical referees acting for
medical journals, to provide rigorous statistical justification for these statements. The
Stata post–estimation command estat concordance provides estimates of Harrell’s c
and Somers’ D, but provides no confidence limits for these, and no confidence limits or
P–values for the differences between the values of these rank parameters from different
models. There are good reasons why this is the case, because confidence interval formu-
las do not cover the user for finding a model in the same data in which its parameters
are then estimated. The somersd and lincom command provides confidence limits and
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P–values for differences between the Somers’ D or Harrell’s c parameters between dif-
ferent predictors. However, not all medical researchers know how to do this when the
predictors are scalar predictive scores from models, and fewer still know how to do so
in such a way that the confidence limits can be taken seriously.. This article aims to
explain how medical researchers can do this, and to pre–empt possible queries that may
arise in the process.

The remainder of this article is divided into 4 further Sections. Section 2 addresses
the queries that commonly arise when users try to duplicate the results of estat

concordance using somersd. Section 3 describes the method of splitting the data
into a training set (to which models are fitted) and a test set (in which their predictive
power is measured). Section 4 describes the extension to non–Cox survival models, such
as those described in [ST] streg. Finally, Section 5 discusses briefly how the methods
might be extended even further.

2 The Cox model: somersd versus estat concordance

We will demonstrate the principles using the Cox proportional hazards model, imple-
mented in Stata using the stcox command (see [ST] stcox), and the Stanford drug trial
data, used for the examples in [ST] stcox postestimation.

Before we raise the issue of confidence limits, we need to show how somersd can
produce the same estimates as estat concordance. This is done using predict after
the survival command to define the predictive score, and then measuring the association
of the predictive score with the lifetime, using somersd. There are 3 issues waiting to
cause confusion for users who attempt to use somersd to duplicate the estimates of
estat concordance:

1. The predict command, used after stcox, produces a negative prediction score
by default, in contrast to the positive prediction score produced by using predict

after most estimation commands.

2. The default coding of a censorship status variable for stcox is different from the
coding of a censorship status variable for somersd.

3. The treatment of tied failure times by estat concordance is different from that
used by somersd.

There are solutions to all of these problems, and we will demonstrate these, enabling
users to use somersd and estat concordance as checks on each other.

We will start our demonstration by inputting the Stanford drug trial data, fitting a
Cox model, and calling estat concordance:

. use http://www.stata-press.com/data/r11/drugtr, clear
(Patient Survival in Drug Trial)

. stset
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-> stset studytime, failure(died)

failure event: died != 0 & died < .
obs. time interval: (0, studytime]
exit on or before: failure

48 total obs.
0 exclusions

48 obs. remaining, representing
31 failures in single record/single failure data

744 total analysis time at risk, at risk from t = 0
earliest observed entry t = 0

last observed exit t = 39

. stcox drug age

failure _d: died
analysis time _t: studytime

Iteration 0: log likelihood = -99.911448
Iteration 1: log likelihood = -83.551879
Iteration 2: log likelihood = -83.324009
Iteration 3: log likelihood = -83.323546
Refining estimates:
Iteration 0: log likelihood = -83.323546

Cox regression -- Breslow method for ties

No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744

LR chi2(2) = 33.18
Log likelihood = -83.323546 Prob > chi2 = 0.0000

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

drug .1048772 .0477017 -4.96 0.000 .0430057 .2557622
age 1.120325 .0417711 3.05 0.002 1.041375 1.20526

. estat concordance

Harrell´s C concordance statistic

failure _d: died
analysis time _t: studytime

Number of subjects (N) = 48
Number of comparison pairs (P) = 849
Number of orderings as expected (E) = 679
Number of tied predictions (T) = 15

Harrell´s C = (E + T/2) / P = .8086
Somers´ D = .6172

The stset command shows us that the input dataset has already been set up as a
survival time dataset, with 1 observation per drug trial subject, and data on survival
time and termination modes, among other things (see [ST] stset). The Cox model
contains two predictive covariates, age (subject age in years) and drug (indicating
treatment group, with the values 0 for placebo and 1 for the drug being tested). We
then show that, according to estat concordance, Harrell’s c is .8086, and Somers’ D
is 0.6172. The Somers’ D implies that, when one of two subjects is observed to survive
another, it is 61.72% more likely that the survivor has the lower of the two hazard ratios,
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predicted by the model, than that the survivor has the higher of the two predicted hazard
ratios. The Harrell’s c is the probability that the survivor has the lower hazard ratio
plus half the (possibly negligible) probability that the two subjects have equal hazard
ratios, and this sum is 80.86% on a percentage scale.

We will now show how to duplicate these estimates using predict and somersd.
We start by defining a negative predictor of lifetime by using predict to calculate a
hazard ratio, and then deriving an inverse hazard ratio, which we expect to be a positive
predictor of lifetime:

. predict hr
(option hr assumed; relative hazard)

. gene invhr=1/hr

This addresses the first of the 3 sources of confusion mentioned above. We now
address the second. We need to define a censorship indicator for input to the somersd

command. The somersd command has a cenind() option, requiring a list of censorship
indicators. These censorship indicators are allocated to the corresponding variables of
the variable list input to somersd, and must be either variable names or zeros (imply-
ing a censorship indicator variable whose values are all zero), and which are matched
one–to–one with the variables in the input variable list. Censorship indicator variables
for somersd are positive in observations where the corresponding input variable value
is right–censored (or known to be equal to or greater than its stated value), negative in
observations where the corresponding input variable value is left–censored (or known to
be equal to or less than its stated value), and zero in observations where the correspond-
ing input variable value is uncensored (or known to be equal to its stated value). If the
list of censorship indicators is shorter than the input variable list, then it is extended
on the right with zeros, implying that the variables without censorship indicators are
uncensored. This coding is not the same as that for the censorship indicator variable
d, created by the svset command, which is 1 in observations where the corresponding
lifetime is uncensored, and 0 in observations where the corresponding lifetime is right–
censored. To convert a stset censorship indicator variable to a somersd censorship
indicator variable, we use the command:

. gene censind=1-_d if _st==1

This creates a new variable censind, which is missing in observations excluded from
the survival sample indicated by the variable st created by svset, 1 in observations
with right–censored lifetimes (where d is 0), and 0 in observations with uncensored
lifetimes (where d is 1).

We can now use somersd to calculate Harrell’s c and Somers’ D, using the option
transf(c) for Harrell’s c, and the option transf(z) (indicating the Normalizing and
variance–stabilizing Fisher’s z or hyperbolic arctangent transformation) for Somers’ D:

. somersd _t invhr if _st==1, cenind(censind) tdist transf(c)
Somers´ D with variable: _t
Transformation: Harrell´s c
Valid observations: 48
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Degrees of freedom: 47

Symmetric 95% CI for Harrell´s c

Jackknife
_t Coef. Std. Err. t P>|t| [95% Conf. Interval]

invhr .8106332 .0423076 19.16 0.000 .7255213 .8957451

. somersd _t invhr if _st==1, cenind(censind) tdist transf(z)
Somers´ D with variable: _t
Transformation: Fisher´s z
Valid observations: 48
Degrees of freedom: 47

Symmetric 95% CI for transformed Somers´ D

Jackknife
_t Coef. Std. Err. t P>|t| [95% Conf. Interval]

invhr .7270649 .1378034 5.28 0.000 .4498402 1.00429

Asymmetric 95% CI for untransformed Somers´ D
Somers_D Minimum Maximum

invhr .62126643 .42176765 .76338983

In both cases, we use the survival time variable t and the survival sample indica-
tor st, created by stset, together with the inverse hazard rate invhr created using
predict, to estimate rank parameters of inverse hazard ratio with respect to survival
time (censored by censorship status). In the case of Harrell’s c, the estimated parameter
is on a scale from 0 to 1, and is expected to be at least 0.5 for a positive predictor of
lifetime, such as an inverse hazard ratio. In the case of Somers’ D, the untransformed
parameter is on a scale from -1 to 1, and is expected to be at least 0 for a positive
predictor of lifetime.

However, we now encounter the third source of confusion. If we compare the es-
timates here to those produced earlier by estat concordance, then we find that the
estimates for Harrell’s c and Somers’D are similar, but not exactly the same. The es-
timates are .8106 and .6213, respectively, when computed by somersd, and .8086 and
.6172, respectively, when computed by estat concordance. The reason for this is that
somersd and estat concordance have different policies for comparing two lifetimes
that terminate simultaneously, of which one is right–censored and the other is uncen-
sored. The estat concordance policy assumes that the owner of the right–censored
lifetime survived the owner of the uncensored lifetime, whereas the somersd policy as-
sumes that neither of the two owners can be said to have survived the other. In the case
of a drug trial, one subject might be known to have died in a certain month, whereas
another might be known to have left the country in the same month, and therefore
become lost to follow–up. The estat concordance policy assumes that the second
subject must have survived the first, which might be probable, given that this second
subject seems to have been in a fit state to travel out of the country. The somersd

policy, more cautiously, allows the possibility that the second subject may have left the
country early in the month, and died unexpectedly of a venous thromboembolism on
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the outbound plane, whereas the first subject may have died, under observation by the
trial organizers, later in the same month.

Whatever the merits of the two policies, we might still like to show that somersd

and estat concordance can be made to duplicate each other’s estimates. This can
easily be done, if lifetimes are expressed as whole numbers of time units, as they are in
the Stanford drug trial data, where lifetimes are expressed in months. In this case, we
can add half a unit to right–censored lifetimes only, and this will cause right–censored
lifetimes to become greater than uncensored lifetimes terminating in the same time
unit, without affecting any other orderings of lifetimes. In our example, we do this by
generating a new lifetime variable studytime2, equal to the modified survival time, and
using stset to reset the various survival–time variables and characteristics so that the
modified survival time is now used. (This is done after using the assert command
to check that the old study time variable is indeed integer–valued; see [D] assert and
[D] functions.) We then proceed as in the previous example:

. use http://www.stata-press.com/data/r11/drugtr, clear
(Patient Survival in Drug Trial)

. assert studytime==int(studytime)

. gene studytime2=studytime+0.5*(died==0)

. stset studytime2, failure(died)

failure event: died != 0 & died < .
obs. time interval: (0, studytime2]
exit on or before: failure

48 total obs.
0 exclusions

48 obs. remaining, representing
31 failures in single record/single failure data

752.5 total analysis time at risk, at risk from t = 0
earliest observed entry t = 0

last observed exit t = 39.5

. stcox drug age

failure _d: died
analysis time _t: studytime2

Iteration 0: log likelihood = -99.911448
Iteration 1: log likelihood = -83.551879
Iteration 2: log likelihood = -83.324009
Iteration 3: log likelihood = -83.323546
Refining estimates:
Iteration 0: log likelihood = -83.323546

Cox regression -- Breslow method for ties

No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 752.5

LR chi2(2) = 33.18
Log likelihood = -83.323546 Prob > chi2 = 0.0000

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

drug .1048772 .0477017 -4.96 0.000 .0430057 .2557622



8 Comparing the predictive power of survival models

age 1.120325 .0417711 3.05 0.002 1.041375 1.20526

. estat concordance

Harrell´s C concordance statistic

failure _d: died
analysis time _t: studytime2

Number of subjects (N) = 48
Number of comparison pairs (P) = 849
Number of orderings as expected (E) = 679
Number of tied predictions (T) = 15

Harrell´s C = (E + T/2) / P = .8086
Somers´ D = .6172

. predict hr
(option hr assumed; relative hazard)

. gene invhr=1/hr

. gene censind=1-_d if _st==1

. somersd _t invhr if _st==1, cenind(censind) tdist transf(c)
Somers´ D with variable: _t
Transformation: Harrell´s c
Valid observations: 48
Degrees of freedom: 47

Symmetric 95% CI for Harrell´s c

Jackknife
_t Coef. Std. Err. t P>|t| [95% Conf. Interval]

invhr .8085984 .0425074 19.02 0.000 .7230845 .8941122

. somersd _t invhr if _st==1, cenind(censind) tdist transf(z)
Somers´ D with variable: _t
Transformation: Fisher´s z
Valid observations: 48
Degrees of freedom: 47

Symmetric 95% CI for transformed Somers´ D

Jackknife
_t Coef. Std. Err. t P>|t| [95% Conf. Interval]

invhr .7204641 .1373271 5.25 0.000 .4441976 .9967306

Asymmetric 95% CI for untransformed Somers´ D
Somers_D Minimum Maximum

invhr .6171967 .41711782 .76021766

This time, the model fit produces the same output as before, and estat concordance

produces the same estimates of .8086 and .6172 for Harrell’s c and Somers’ D, respec-
tively, but the same estimates are now also produced by somersd, at least after rounding
to 4 decimal places.

It should be stressed that Harrell’s c and Somers’ D, computed as above either by
somersd or by estat concordance, are only valid measures of the predictive power
of a survival model if there are no time–dependent covariates or lifetimes with delayed
entries. However, if somersd (instead of estat concordance) is used, then sensible
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estimates can still be produced with weighted data, as long as these weights are explicitly
supplied to somersd.

3 Comparing predictive power with training and test sets

Another caution about the results of the previous section is that the confidence intervals
generated by somersd should not really be taken seriously. This is because, in general,
confidence intervals do not cover the user against the consequences of finding a model
in a dataset, and then estimating its parameters in the same dataset. In the case of
Harrell’s c and Somers’ D of inverse hazard ratios with respect to lifetime, we would
expect this incorrect practice to lead to over–optimistic estimates of predictive power,
because we are measuring the “predictive power” of a model optimized for the dataset
in which the predictive power is measured.

We should really be finding models in a training set of data, and testing their pre-
dictive power, both absolutely and relatively to each other, in a test set of data, in-
dependent of the training set. If we only have one set of data, then we might divide
its primary sampling units (PSUs) randomly, or semi-randomly, into two subsets, and
use the first subset as the training set and the second subset as the test set. The next
two subsections demonstrate this practice by splitting the Stanford drug trial data into
a training set and a test set of similar size, using random subsets and semi–random
stratified subsets, respectively. We will use the somersd policy, rather than the estat

concordance policy, regarding tied censored and non–censored lifetimes.

3.1 Completely–random training and test sets

We will first demonstrate the relatively simple practice of splitting the sampling units,
completely at random, into a training set and a test set. We will fit 3 models to the
training set, namely “Model 1” (containing the variables drug and age), “Model 2”
(containing drug only), and “Model 3” (containing age only). We will then use out–of–
sample prediction, and somersd, to estimate the predictive power of these 3 models in
the test set, and then use lincom to compare their predictive power, in the manner of
Section 5.2 of Newson (2006b).

We start by inputting the data, and then split the data, completely at random, into
a training set and a test set, using the runiform() function to create a uniformly–
distributed pseudo–random variable, sort to sort the dataset by this variable, and the
mod() function to allocate alternate observations to the training and test sets. (See
[D] sort and [D] functions.) We then re–sort the data back to their old order, using
the generated variable oldord.

. use http://www.stata-press.com/data/r11/drugtr, clear
(Patient Survival in Drug Trial)

. set seed 987654321

. gene ranord=runiform()

. gene long oldord=_n
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. sort ranord, stable

. gene testset=mod(_n,2)

. sort oldord

. tab testset, m

testset Freq. Percent Cum.

0 24 50.00 50.00
1 24 50.00 100.00

Total 48 100.00

We see that there are 24 patient lifetimes in the training set (where testset==0),
and 24 in the test set (where testset==1). We then fit the 3 Cox models to the training
set, and create inverse hazard rate variables invhr1, invhr2, and invhr3, for Models 1,
2 and 3, respectively:

. use http://www.stata-press.com/data/r11/drugtr, clear
(Patient Survival in Drug Trial)

. set seed 987654321

. gene ranord=runiform()

. gene long oldord=_n

. sort ranord, stable

. gene testset=mod(_n,2)

. sort oldord

. tab testset, m

testset Freq. Percent Cum.

0 24 50.00 50.00
1 24 50.00 100.00

Total 48 100.00

. stcox drug age if testset==0

failure _d: died
analysis time _t: studytime

Iteration 0: log likelihood = -36.900079
Iteration 1: log likelihood = -30.207704
Iteration 2: log likelihood = -30.075862
Iteration 3: log likelihood = -30.075741
Refining estimates:
Iteration 0: log likelihood = -30.075741

Cox regression -- Breslow method for ties

No. of subjects = 24 Number of obs = 24
No. of failures = 14
Time at risk = 370

LR chi2(2) = 13.65
Log likelihood = -30.075741 Prob > chi2 = 0.0011

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

drug .1302894 .085747 -3.10 0.002 .0358683 .473269
age 1.139011 .0678588 2.18 0.029 1.013482 1.280089
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. predict hr1
(option hr assumed; relative hazard)

. gene invhr1=1/hr1

. stcox drug if testset==0

failure _d: died
analysis time _t: studytime

Iteration 0: log likelihood = -36.900079
Iteration 1: log likelihood = -32.692209
Iteration 2: log likelihood = -32.647379
Iteration 3: log likelihood = -32.647309
Refining estimates:
Iteration 0: log likelihood = -32.647309

Cox regression -- Breslow method for ties

No. of subjects = 24 Number of obs = 24
No. of failures = 14
Time at risk = 370

LR chi2(1) = 8.51
Log likelihood = -32.647309 Prob > chi2 = 0.0035

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

drug .1843768 .112761 -2.76 0.006 .0556069 .611341

. predict hr2
(option hr assumed; relative hazard)

. gene invhr2=1/hr2

. stcox age if testset==0

failure _d: died
analysis time _t: studytime

Iteration 0: log likelihood = -36.900079
Iteration 1: log likelihood = -35.587135
Iteration 2: log likelihood = -35.58462
Refining estimates:
Iteration 0: log likelihood = -35.58462

Cox regression -- Breslow method for ties

No. of subjects = 24 Number of obs = 24
No. of failures = 14
Time at risk = 370

LR chi2(1) = 2.63
Log likelihood = -35.58462 Prob > chi2 = 0.1048

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

age 1.082178 .0526849 1.62 0.105 .9836912 1.190526

. predict hr3
(option hr assumed; relative hazard)

. gene invhr3=1/hr3

Note that the variables invhr1, invhr2 and invhr3 are defined for all observations,
both in the training set and in the test set. We then define the censorship indicator as
before, and estimate the Harrell’s c indices in the test set, for all 3 models fitted to the
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training set:

. gene censind=1-_d if _st==1

. somersd _t invhr1 invhr2 invhr3 if _st==1 & testset==1, cenind(censind) tdist
> transf(c)
Somers´ D with variable: _t
Transformation: Harrell´s c
Valid observations: 24
Degrees of freedom: 23

Symmetric 95% CI for Harrell´s c

Jackknife
_t Coef. Std. Err. t P>|t| [95% Conf. Interval]

invhr1 .8819444 .0490633 17.98 0.000 .7804493 .9834396
invhr2 .7916667 .0330999 23.92 0.000 .7231944 .860139
invhr3 .6365741 .0831046 7.66 0.000 .4646592 .808489

We see that Harrell’s c of inverse hazard ratio with respect to lifetime is .8819 for
Model 1 (using both drug treatment and age), .7917 for Model 2 (using drug treatment
only), and .6366 for Model 3 (using age only), and all of these estimates have confi-
dence limits, which are probably less unreliable than the ones we saw in the previous
Section. However, the sample Harrell’s c is likely to have a skewed distribution in the
presence of such strong positive associations, for the same reasons as Kendall’s τa (see
Daniels and Kendall (1947)). Differences between Harrell’s c indices are likely to have
a less skewed sampling distribution, and are also what we probably really wanted to
know. We estimate these with lincom, as follows:

. lincom invhr1-invhr2

( 1) invhr1 - invhr2 = 0

_t Coef. Std. Err. t P>|t| [95% Conf. Interval]

(1) .0902778 .0350965 2.57 0.017 .0176751 .1628804

. lincom invhr1-invhr3

( 1) invhr1 - invhr3 = 0

_t Coef. Std. Err. t P>|t| [95% Conf. Interval]

(1) .2453704 .0736766 3.33 0.003 .0929586 .3977821

. lincom invhr2-invhr3

( 1) invhr2 - invhr3 = 0

_t Coef. Std. Err. t P>|t| [95% Conf. Interval]

(1) .1550926 .0823647 1.88 0.072 -.0152917 .3254769

We note that Model 1 seems to have a slightly higher predictive power than Model 2
or (especially) Model 3, while the difference between Model 2 and Model 3 is slightly
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less convincing. We can also do the same comparison using Somers’ D rather than Har-
rell’s c, using the Normalizing and variance–stabilizing z–transform, recommended by
Edwardes (1995), and implemented using the somersd option transf(z). In that case,
the differences between the predictive power of the different models will be expressed
in z–units (not shown).

3.2 Stratified semi–random training and test sets

Completely–random training and test sets may have the disadvantage that, by chance,
important predictor variables may have different sample distributions in the training
and test sets, making both the training set and the test set less representative of the
sample as a whole, and of the total population from which the training and test sets were
sampled. We might feel safer if we chose the training and test sets semi–randomly, with
the constraint that the two sets have similar distributions of key predictor variables
in the various models. In our case, we might want to ensure that both the training
set and the test set contain their “fair share” of drug–treated older subjects, drug–
treated younger subjects, placebo–treated older subjects, and placebo–treated younger
subjects. To do this, we might start by defining sampling strata which are combinations
of treatment status and age group, and split each of these strata as evenly as possible
between the training set and the test set. Again, this requires the dataset to be sorted,
and we will sort it back to its old order. This is done as follows, using xtile to define
age groups (see [D] pctile):

. use http://www.stata-press.com/data/r11/drugtr, clear
(Patient Survival in Drug Trial)

. set seed 987654321

. gene ranord=runiform()

. gene long oldord=_n

. xtile agegp=age, nquantiles(2)

. tab drug agegp, m

Drug type
(0=placebo 2 quantiles of age

) 1 2 Total

0 11 9 20
1 16 12 28

Total 27 21 48

. sort drug agegp ranord, stable

. by drug agegp: gene testset=mod(_n,2)

. sort oldord

. table testset drug agegp, row col scol

2 quantiles of age and Drug type (0=placebo)
1 2 Total

testset 0 1 Total 0 1 Total 0 1 Total

0 5 8 13 4 6 10 9 14 23
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1 6 8 14 5 6 11 11 14 25

Total 11 16 27 9 12 21 20 28 48

This time, the training set is slightly smaller than the test set, because of odd total
numbers of subjects in sampling strata. We then carry out the model fitting in the
training set, and the calculation of inverse hazard ratios in both sets, using the same
command sequence as with the completely–random training and test sets, producing
mostly similar results (not shown). Finally, we estimate the Harrell’s c indices in the
test set:

. gene censind=1-_d if _st==1

. somersd _t invhr1 invhr2 invhr3 if _st==1 & testset==1, cenind(censind) tdist
> transf(c)
Somers´ D with variable: _t
Transformation: Harrell´s c
Valid observations: 25
Degrees of freedom: 24

Symmetric 95% CI for Harrell´s c

Jackknife
_t Coef. Std. Err. t P>|t| [95% Conf. Interval]

invhr1 .7911392 .0674598 11.73 0.000 .6519091 .9303694
invhr2 .7257384 .049801 14.57 0.000 .6229542 .8285226
invhr3 .5780591 .0972101 5.95 0.000 .3774274 .7786908

The c–estimates for the three models are not dissimilar to the previous ones, with
completely–random training and test sets. Their pairwise differences are as follows:

. lincom invhr1-invhr2

( 1) invhr1 - invhr2 = 0

_t Coef. Std. Err. t P>|t| [95% Conf. Interval]

(1) .0654008 .0491405 1.33 0.196 -.0360202 .1668219

. lincom invhr1-invhr3

( 1) invhr1 - invhr3 = 0

_t Coef. Std. Err. t P>|t| [95% Conf. Interval]

(1) .2130802 .0763467 2.79 0.010 .0555084 .3706519

. lincom invhr2-invhr3

( 1) invhr2 - invhr3 = 0

_t Coef. Std. Err. t P>|t| [95% Conf. Interval]

(1) .1476793 .1080388 1.37 0.184 -.0753017 .3706603
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Model 1 (with drug treatment and age) still seems to predict better than Model 3
(with age alone). This conclusion is similar if we compare the z–transformed Somers’ D
values (not shown).

4 Extensions to non–Cox survival models

Measuring predictive power using Harrell’s c and Somers’ D is not restricted to Cox
models, but can be applied to any model with a positive or negative ordinal predictor.
The streg command (see [ST] streg) fits a wide range of survival models, each of which
has a wide choice of predictive output variables, which can be computed using predict

(see [ST] streg postestimation). These output variables may predict survival times
positively or negatively on an ordinal scale, and include median survival times, mean
survival times, median log survival times, mean log survival times, hazards, hazard
ratios, or linear predictors.

We will briefly demonstrate the principles involved by fitting Gompertz models to
the survival dataset that we used in previous sections. The Gompertz model assumes an
exponentially–increasing (or decreasing) hazard rate, and the linear predictor is the log
of the zero–time baseline hazard rate, whereas the rate of increase (or decrease) in hazard
rate, after time zero, is a nuisance parameter. Therefore, if the Gompertz model is true,
then so is the Cox model. However, the argument of Fisher (1935) presumably implies
that, if the Gompertz model is true, then we can be no less efficient, asymptotically,
by fitting a Gompertz model instead of a Cox model. We will use the predicted median
lifetime as the positive predictor, whose predictive power will be assessed using somersd.

We start by inputting the cancer trial dataset, and defining the stratified, semi–
random training and test sets, exactly as in Section 3.2. We then fit, to the training set,
Gompertz models 1, 2 and 3, containing, respectively, both drug treatment and age,
drug treatment only, and age only. After fitting each of the 3 models, we use predict

to compute the predicted median survival time for the whole sample, deriving the al-
ternative positive lifetime predictors medsurv1, medsurv2, and medsurv3 for Models 1,
2, and 3, respectively:

. streg drug age if testset==0, distribution(gompertz) nolog

failure _d: died
analysis time _t: studytime

Gompertz regression -- log relative-hazard form

No. of subjects = 23 Number of obs = 23
No. of failures = 15
Time at risk = 338

LR chi2(2) = 20.62
Log likelihood = -14.076214 Prob > chi2 = 0.0000

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

drug .0948331 .0594575 -3.76 0.000 .0277512 .3240694
age 1.172588 .0616365 3.03 0.002 1.057798 1.299836
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/gamma .1553139 .0430892 3.60 0.000 .0708605 .2397672

. predict medsurv1
(option median time assumed; predicted median time)

. streg drug if testset==0, distribution(gompertz) nolog

failure _d: died
analysis time _t: studytime

Gompertz regression -- log relative-hazard form

No. of subjects = 23 Number of obs = 23
No. of failures = 15
Time at risk = 338

LR chi2(1) = 11.02
Log likelihood = -18.873214 Prob > chi2 = 0.0009

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

drug .153411 .0877048 -3.28 0.001 .0500295 .4704213

/gamma .1063648 .0361612 2.94 0.003 .0354901 .1772394

. predict medsurv2
(option median time assumed; predicted median time)

. streg age if testset==0, distribution(gompertz) nolog

failure _d: died
analysis time _t: studytime

Gompertz regression -- log relative-hazard form

No. of subjects = 23 Number of obs = 23
No. of failures = 15
Time at risk = 338

LR chi2(1) = 5.56
Log likelihood = -21.606438 Prob > chi2 = 0.0184

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

age 1.117255 .0516156 2.40 0.016 1.020536 1.223142

/gamma .088458 .0341184 2.59 0.010 .0215871 .1553288

. predict medsurv3
(option median time assumed; predicted median time)

Unsurprisingly, the fitted parameters are not dissimilar to the corresponding param-
eters for the Cox regression. We then compute the censorship indicator censind, and
then the Harrell’s c indices, for the test set:

. gene censind=1-_d if _st==1

. somersd _t medsurv1 medsurv2 medsurv3 if _st==1 & testset==1, cenind(censind)
> tdist transf(c)
Somers´ D with variable: _t
Transformation: Harrell´s c
Valid observations: 25
Degrees of freedom: 24

Symmetric 95% CI for Harrell´s c
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Jackknife
_t Coef. Std. Err. t P>|t| [95% Conf. Interval]

medsurv1 .7911392 .0674598 11.73 0.000 .6519091 .9303694
medsurv2 .7257384 .049801 14.57 0.000 .6229542 .8285226
medsurv3 .5780591 .0972101 5.95 0.000 .3774274 .7786908

We then compare the Harrell’s c parameters for the alternative median survival
functions, using lincom, just as before:

. lincom medsurv1-medsurv2

( 1) medsurv1 - medsurv2 = 0

_t Coef. Std. Err. t P>|t| [95% Conf. Interval]

(1) .0654008 .0491405 1.33 0.196 -.0360202 .1668219

. lincom medsurv1-medsurv3

( 1) medsurv1 - medsurv3 = 0

_t Coef. Std. Err. t P>|t| [95% Conf. Interval]

(1) .2130802 .0763467 2.79 0.010 .0555084 .3706519

. lincom medsurv2-medsurv3

( 1) medsurv2 - medsurv3 = 0

_t Coef. Std. Err. t P>|t| [95% Conf. Interval]

(1) .1476793 .1080388 1.37 0.184 -.0753017 .3706603

Unsurprisingly, the conclusions for the Gompertz model are essentially the same as
those for the Cox model.

5 Further extensions

The use of Harrell’s c and Somers’ D in test sets, to compare the power of models fitted
to training sets, can be extended further, to non–survival regression models. In this
case, life is even simpler, as we do not have to define a censorship indicator, such as
censind, for input to somersd. The predictive score is still computed using out–of–
sample prediction, and can be either the fitted regression value or the linear predictor
(if one exists in the model).

The methods presented so far have the limitation that the Harrell’s c and Somers’ D
parameters calculated estimate only the ordinal predictive power, in the population
from which the training and test sets were sampled, of the precise model fitted to the
training set. We might prefer to estimate the mean predictive power that we can expect,
in the whole universe of possible training and test sets, using the same set of alternative
models. Bootstrap–like methods for doing this, involving repeated splitting of the same
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sample into training and test sets, are described in Harrell et al. (1982) and Harrell et al.
(1996).

Another limitation of the methods presented here, mentioned at the end of Section 2,
is that they should not (usually) be used with models with time–dependent covariates.
This is because the predicted variable input to somersd, which the alternative predic-
tive scores are competing to predict, is the length of a lifetime, rather than an event
of survival or non–survival through a minimal time interval (such as a day). A pre-
dictor variable for such a lifetime must therefore stay constant, at least through that
lifetime, and this rules out functions of continuously–varying time–dependent covari-
ates. In Stata, survival–time datasets may have multiple observations for each subject
with a lifetime, representing multiple sub–lifetimes. Discretely–varying time–dependent
covariates, which remain constant through a sub–lifetime, can also be included in such
datasets. somersd can therefore be used in the case where the model is a Cox regres-
sion, the time-dependent covariates vary only discretely, the multiple sub–lifetimes are
the times spent by a subject in an age group, and each subject becomes at risk at
the start of each age group to which s/he survives. If the subject identifier variable
is named subid, and the age group for each sub–lifetime is represented by a discrete
variable agegp, then the user may use somersd, with the options cluster(subid)

funtype(bcluster) wstrata(agegp), to calculate Somers’ D or Harrell’s c estimates
restricted to comparisons between sub–lifetimes of different subjects in the same age
group. (See Newson (2006b) for details of the options for somersd, and [ST] stset for
details on survival–time datasets.) If the user has access to sufficient data storage space,
then the age groups might be defined finely (as subject–years or even subject–days), and
the discretely time–dependent covariates might therefore be very nearly continuously
time–dependent. Any training sets or test sets in this case should, of course, be sets of
subjects, rather than sets of lifetimes.
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