The Stata Journal (2001) 1, Number 1, pp. 1--2

Stata tip 13: generate and replace use the
current sort order

Roger Newson
King’s College London, UK
roger.newson@kcl.ac.uk

Did you know that generate and replace use the current sort order? You might
have guessed this, because otherwise the sum() function could work as designed only
with difficulty. However, this fact is not documented in the manuals, but only in the
Stata website FAQs. The consequence is that, given a particular desired sort order,
you can be sure that values of a variable are calculated in that order, and can use them
to calculate subsequent values of the same variable.

A simple example is filling in missing values by copying the previous non-missing
value. The syntax for this is simply

replace myvar = myvar[n-1] if missing(myvar)

Here the subscript [.n-1], based on the built-in variable _n, refers to the previous
observation in the present sort order. To find more about subscripts, see [U] 16.7
Explicit subscripting or on-line help for subscripting.

Suppose that values of myvar are present for observations 1, 2 and 5, but missing
in observations 3, 4 and 6. replace starts by replacing myvar [3] by the non-missing
myvar [2]. Tt then replaces myvar [4] by myvar [3], which now contains (just in time)
a copy of the non-missing myvar[2]. Finally, replace puts a copy of myvar[5] into
myvar [6]. As said, this all requires that data are in the desired sort order, commonly
that of some time variable. If not, reach for the sort command.

There are numerous variations on this idea. Suppose that a sequence of years con-
tains non-missing values only for years like 1980, 1990 and 2000. This is common in
data derived from spreadsheet files. A simple fix would be

replace year = year[_n-1] + 1 if mi(year)

That way, changes cascade down the observations.

More exotic examples concern recurrence relations, as met in probability theory and
elsewhere in mathematics. We typically use generate to define the first value (or the
first few values), and then replace to define the other values.

Consider the famous “birthday problem”: what is the probability that no two out of
n people have the same birthday? Assuming equal probabilities of birth on each of 365
days, and so ignoring leap years and seasonal fertility variation, then this probability is
[1_, zj, where x; = (365 — j + 1)/365. We can put these probabilities into a variable
palldiff by typing

set obs 370

(© 2001 Stata Corporation st0001




2 Stata tips

generate double palldiff =1
replace palldiff = palldiff[_n-1] * (365 - _n + 1) / 365 in 2/1
label var palldiff "Pr(All birthdays are different)"
list palldiff
To illustrate: the probability that all birthdays are different is below 0.5 for 23
people, below one-millionth for 97 people, and zero for over 365 people. An alternative
solution (suggested by R. G. Gutierrez) is to replace the second and third lines of the

above program with

generate double palldiff = 0
replace palldiff = exp(sum(1ln(366 - n) - 1n(365))) in 1/365
which works because a product of positive numbers is the sum of their logarithms,
exponentiated.

Another example is the Fibonacci sequence, defined by y; = y» = 1 and otherwise
by Yn = Yn—1 + Yn—2. The first 20 numbers are given by

set obs 20
generate y = 1
replace y = y[_n-1] + y[_n-2] in 3/1
list y
If you ever want to work backwards, by referring to later observations, it is often
easiest to reverse the order of observations and then to use tricks like these.




