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Abstract.

Logistic and probit models are the most popular regression model for binary
outcomes. A simple robust alternative is the robit model, which replaces the
underlying Normal distribution in the probit model with a Student t–distribution.
The heavier tails of the t–distribution (compared with the Normal distribution)
means that model outliers are less influential. Robit regression can be fit as a
generalized linear model with the link function defined as the inverse cumulative t–
distribution function with a specified number of degrees of freedom (df), and it has
been advocated as being particularly suitable for estimating inverse–probability
weights and propensity scoring more generally. Here we describe a new package
called robit that implements robit regression in Stata.

Keywords: st0001, robit, xlink, robit regression, binary regression, generalized
linear models, inverse probability weights

1 Introduction

Robit regression models are similar to probit models, but the underlying Normal distri-
bution in the latter is replaced by a central Student t–distribution with a zero median
and ν degrees of freedom (df). More formally, they can be defined as generalized linear
models with a binomial family (usually Bernoulli) variance function and a robit link
function with ν df.

The Student t–distribution resembles a Normal distribution in that it is symmetrical
and bell–shaped, but it has heavier tails. For this reason, it has been advocated as
an alternative to the Normal distribution in defining regression models for continuous
outcomes, without giving too much influence to outlying values. For example, this
was done by Zellner (1976) and by Lange et al. (1989). These ideas were extended to
regression models with binary outcomes (see e.g. Liu (2004)).

Compared to the better–known probit and logit link functions, the robit link gives
less influence to observations that are highly unlikely given the values of the predictors.
This property is discussed in Mudholkar and George (1982), Albert and Chib (1998),
Liu (2004), and Kang and Schafer (2007), and is thought to make it particularly suited
for use in estimating probability weights.

Seaman and White (2011) recommended the use of robit models for computing in-
verse probability weights to handle missing at random values and included this method
in a list of useful techniques that are “not routinely available in most statistical soft-
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ware”. In the case of robit regression and Stata software, this is no longer true. We
here present a package called robit that enables robit regression in Stata.

2 Methods and formulas

Robit models are a special class of generalized linear models (GLMs). GLMs were
introduced by McCullagh and Nelder (1989), and are implemented in Stata using the
glm command. Specifically, robit regression corresponds to a GLM with a binomial
(usually Bernoulli) variance function and a robit link function.

In general, a link function η(µ) is an invertible monotonic transformation of the
conditional mean µ, equal to a conditional probability in the case of a Bernoulli model.
For instance, the logit link is defined as

η(µ) = ln [µ/(1− µ)] , (1)

and the probit link is defined as

η(µ) = Φ−1(µ), (2)

where Φ(·) is the cumulative standard Normal distribution function and Φ−1(·) is its
inverse. And both of these link functions have twice–differentiable inverses. To fit a
GLM with a specified link function, we need to be able to generate variables containing
the link function η(µ) from the conditional mean µ, the inverse link function µ(η) from
the link function, and also the first 2 derivatives of µ with respect to η.

A robit link function (also known as a t–link function) with ν df is defined by
substituting an inverse cumulative t–distribution function for the inverse cumulative
standard Normal distribution function in the probit link function, as

η(µ) = F−1
t(ν)(µ), (3)

where Ft(ν)(·) is the cumulative Student t–distribution function with ν df, and F−1
t(ν)(·) is

its inverse. This link function also has a twice–differential inverse, with a first derivative
given by

dµ

dη
= ft(ν)(η) =

Γ
(

ν+1
2

)

√
νπ Γ

(

ν

2

)

(

1 +
η2

ν

)

−

ν+1

2

, (4)

where ft(ν)(·) is the density function for the t–distribution with ν degrees of freedom.
Therefore, differentiating (4) with respect to η, defining u = 1 + η2/ν and using the
chain rule, we have the second derivative of µ with respect to η as
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The formulas (3), (4), and (5) define the variables that we need to generate, in order for
glm to fit a robit model. As the official glm command does not allow the specification of
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Figure 1: Inverse robit and probit link functions µ(η).

robit models, we wrote user–defined robit link functions to do this. See [R] glm, under
User–defined functions, for technical details of how this is done.

Figure 1 shows the inverse robit link functions (also known as t–distribution func-
tions) with df 1, 4 and 10, together with the inverse probit link function (also known as
the Normal distribution function or as a t–distribution function with infinite df). Note
that the fewer the df are, the further µ(η) is from 0 (in the case of negative η), or from
1 (in the case of positive η).

The choice of df for robit models still seems to be an open question. Kang and Schafer
(2007) recommended 4 df, and, commenting on this article, Ridgeway and McCaffrey
(2007) discuss and demonstrate the possibility of 1 df. Liu (2004) described 7 df as being
an excellent approximation to the logit link function, but less influenced by model out-
liers. Albert and Chib (1998) discussed the case of 8 df. Robit with 9 df was mentioned
by Mudholkar and George (1982) as having a similar kurtosis to the logit link function.
In general, robit link functions with fewer df are influenced less by outliers than those
with more df. In the limit, as ν tends to infinity, the robit model with ν df becomes
the probit model. The df of a robit model can either be pre–specified by the user (for
computational simplicity, as implemented in our robit package), or be estimated to-
gether with the other parameters of the model, possibly using an EM–type algorithm,
as discussed in Liu (2006). Gelman et al. (2020), in their Chapter 15, express the view
that an estimate of the df from the data “might be noisy”.

Note that the t–distributions used by our packages are all standard t–distributions,
specified uniquely by their df. Chapter 15 of Gelman et al. (2020) discusses the possi-
bility of defining robit link functions using generalized t–distributions (with added scale
parameters), to modify the units in which the parameters are expressed. Generalizations
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of the t–distribution are reviewed for example in Li and Nadarajah (2020).

3 The package robit

robit depvar
[

indepvars
] [

if
] [

in
] [

weight
]

, dfreedom(#)
[

noconstant

offset(varname) constraints(constraints) asis vce(vcetype) level(#)

noheader notable collinear coeflegend difficult from(init specs)
]

where depvar is a dependent variable which must be binary.

fweights, iweights, aweights, and pweights are allowed; see help for weight.

robit has all the features available after estimation for glm, such as the predict and
margins commands. See [R] glm postestimation.

3.1 Description

robit fits a robit regression model, with a number of degrees of freedom specified by
the user. It requires the SSC package xlink in order to work.

3.2 Options

dfreedom(#) specifies the df for the robit model to be fitted. It must be specified, as
an integer between 1 and 10.

noconstant suppresses the constant term (intercept) in the model.

offset(varname) specifies that varname be included in the model, with the coefficient
constrained to be 1.

constraints(constraints) specifies the linear constraints to be applied during estima-
tion. The default is to perform unconstrained estimation. See [R] Estimation

options.

asis forces retention of perfect predictor variables and their associated, perfectly pre-
dicted observations. This may produce instabilities in maximization; see [R] probit.

vce(vcetype) specifies the type of standard error reported. Possible types include those
that are derived from asymptotic theory (oim, opg), those robust to some kinds of
misspecification (robust), or that allow for intragroup correlation (cluster clust-
var), and those from bootstrap or jackknife methods (bootstrap, jackknife); see
[R] vce option.

level(#) specifies the confidence level, set to 95 if absent. See [R] Estimation op-

tions.

noheader suppresses the header information from the output. The coefficient table is
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still displayed.

notable suppresses the table of coefficients from the output. The header information
is still displayed.

collinear specifies that the estimation command not omit collinear variables. This op-
tion is seldom used because collinear variables make a model unidentified. However,
you can add constraints to a model that will identify it even with collinear variables.
See [R] Estimation options for details.

coeflegend instructs Stata not to show the coefficient results but to display instead
the legend of the coefficients and how they should be specified in an expression.

difficult specifies that the likelihood function is likely to be difficult to maximize
because of nonconcave regions. There is no guarantee that difficult will work
better than the default; sometimes it is better and sometimes it is worse. You should
use the difficult option only when the default stepper declares convergence and
the last iteration is “not concave” or when the default stepper is repeatedly issuing
“not concave” messages and producing only tiny improvements in the log likelihood.
See [R] Maximize.

from() specifies initial values for the regression coefficients. See [R] Maximize.

3.3 Remarks

robit works by calling glm with a user–defined robit link function and a Bernoulli
distribution family. More in detail, the link function is specified as robit followed by
an integer between 1 and 10 representing the df; for example, link(robit7) corresponds
to a robit link function with 7 df. We collected these user–written robit link functions
into an SSC package called xlink, which must be installed in order for robit to work.

robit is designed to be user–friendly, and not to require advanced Stata or statistical
skills. Users who want to fit robit models with the full power of glm can use glm directly,
with a robit function from xlink. For example, robit y x1 x2, df(4) is equivalent
to glm y x1 x2, family(binomial) link(robit4). The use of glm in place of robit
may be advantageous when, for instance, the specification of nonstandard maximization
(see [R] Maximize) or display (see [R] Estimation options) options is needed.

3.4 Saved results

robit saves in e() all results saved by glm with a robit link and a Bernoulli variance
family, and also the following:

Scalars

e(depvarsum) sum of dependent variable in es-
timation sample
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4 Examples

4.1 Creating an outlier in a simulated dataset

We illustrate the use of our robit command using a two–scenario simulation, similar
in spirit to the one in Chapter 15 of Gelman et al. (2020). We generated data for
200 subjects, aiming to estimate the effect of a predictor x on a binary outcome d (1
if a subject has a disease, 0 otherwise). We assumed the predictor to be Normally
distributed (as might be the case with the log of a biological assay result), with mean
0 and standard deviation 5. In the first scenario (the base scenario), we simulated a
binary outcome d, using a logistic model with an intercept (log odds for zero x) of -3
and a log odds ratio of 1 per unit of x. This was done using the code

gen x=rnormal(0,5)
gen y=invlogit(-3+1*x)
gen d=runiform()<y

(See Buis (2007) for more about simulating binary and other discrete models.) In the
second scenario (the outlier scenario), we introduced an outlier by switching the outcome
of an extreme x–value from 0 to 1. Specifically, we created a new binary variable d2,
which was as d in the first scenario, except that the subject with the smallest x–value
(and therefore with the lowest probability of disease in the base scenario) was diagnosed
(or misdiagnosed) as having the disease. Note that outliers are usually thought of as
extreme observations, but, in the context of binary outcomes, are usually observations
that are highly unlikely given the values of the predictors.

Of the 200 subjects, 52 had the disease in the base scenario, increasing to 53 in the
outlier scenario (as the outcome of one observation was switched from 0 to 1). We fitted
3 binary regression models:

1. a logit model for the base scenario, regressing d with respect to x.

2. a logit model for the outlier scenario, regressing d2 with respect to x.

3. a robit model with 4 degrees of freedom for the outlier scenario, regressing d2 with
respect to x.

We used Huber (or “robust”) variances for consistency throughout, as not all the models
were correctly specified, although we knew that the first one was, having carried out the
simulation under it. For each of the 3 models, we estimated the probability of having
the disease as a function of x. Note that using Huber variances does not affect the point
estimates or the predicted probabilities.

The logit model for the base scenario gave the following results:

. logit d x, vce(robust)

Iteration 0: log pseudolikelihood = -114.61138
Iteration 1: log pseudolikelihood = -59.457924
Iteration 2: log pseudolikelihood = -44.370079
Iteration 3: log pseudolikelihood = -43.221978
Iteration 4: log pseudolikelihood = -43.207413
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Iteration 5: log pseudolikelihood = -43.207411

Logistic regression Number of obs = 200
Wald chi2(1) = 22.36
Prob > chi2 = 0.0000

Log pseudolikelihood = -43.207411 Pseudo R2 = 0.6230

Robust
d Coefficient std. err. z P>|z| [95% conf. interval]

x 1.001279 .2117557 4.73 0.000 .5862459 1.416313
_cons -2.784094 .4921013 -5.66 0.000 -3.748595 -1.819593

. predict p_logit
(option pr assumed; Pr(d))

We see that the estimated log odds ratio is 1.001 per unit of x (95% CI, 0.586 to 1.416).

The logit regression in the outlier scenario produced the following output:

. logit d2 x, vce(robust)

Iteration 0: log pseudolikelihood = -115.64441
Iteration 1: log pseudolikelihood = -67.070275
Iteration 2: log pseudolikelihood = -57.513152
Iteration 3: log pseudolikelihood = -56.998017
Iteration 4: log pseudolikelihood = -56.996734
Iteration 5: log pseudolikelihood = -56.996734

Logistic regression Number of obs = 200
Wald chi2(1) = 10.75
Prob > chi2 = 0.0010

Log pseudolikelihood = -56.996734 Pseudo R2 = 0.5071

Robust
d2 Coefficient std. err. z P>|z| [95% conf. interval]

x .7103551 .2166666 3.28 0.001 .2856964 1.135014
_cons -2.041539 .5319693 -3.84 0.000 -3.084179 -.9988981

. predict p_logit_o
(option pr assumed; Pr(d2))

This time, the log odds ratio per x–unit is estimated as 0.710 (95% CI, 0.286 to
1.135). Therefore, creating the outlier has reduced the estimated log odds ratio (non–
significantly).

The robit model under the outlier scenario produced output as follows:

. robit d2 x, dfr(4) vce(robust)

Iteration 0: log pseudolikelihood = -69.26115
Iteration 1: log pseudolikelihood = -51.513345
Iteration 2: log pseudolikelihood = -51.379071
Iteration 3: log pseudolikelihood = -51.378786
Iteration 4: log pseudolikelihood = -51.378786

Model: Robit with 4 d.f.

Number of obs: 200
Wald chi2(1): 20.013863
Prob > chi2: 7.688e-06
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Log pseudolikelihood: -51.378786

Robust
d2 Coefficient std. err. z P>|z| [95% conf. interval]

d2
x .6739678 .1506516 4.47 0.000 .3786962 .9692395

_cons -1.84183 .3691371 -4.99 0.000 -2.565325 -1.118334

. predict p_robit_o
(option mu assumed; predicted mean d2)

This time, the regression coefficient of d2 with respect to x is expressed in different
units, namely units of the t–distribution with 4 df. The value is estimated as 0.674
(95% CI, 0.379 to 0.969). These units are not always easy to understand, but the
predicted probabilities are. Figure 2 gives the predicted probabilities from each of the
3 models, together with the actual data points in the outlier scenario. We see that
the predicted probability curve estimated with the logit model in the outlier scenario is
less steep than that obtained from the logit model fitted to the base scenario. This is
because the outlier (visible in the top left corner of the graph) is very atypical for its
outcome group, making it the kind of outlier that has a large impact on the regression.
However, the robit model fitted to the contaminated data (the outlier scenario) leads to
predicted probabilities much more similar to those obtained from the logit model fitted
to the base scenario data.
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4.2 Creating an outlier in propensity score analysis

In the real world, robit models are sometimes recommended for generating treatment–
propensity scores (Ridgeway and McCaffrey (2007)) or completeness–propensity scores
(Seaman and White (2011)). In both settings, the aim is to prevent outlying propen-
sity weights. These may be encountered in a treatment–propensity setting if a treated
subject has a very high predicted probability of being untreated or vice versa, or in a
completeness–propensity setting if a subject with complete data has a very high pre-
dicted probability of having missing values. Hereafter we will describe an example of
how robit regression can be used in the context of Rubin’s causal model.

The Rubin method of confounder adjustment, in its 21st–century version described
by Rubin (2008), is a 2–phase method for estimating the causal effect of a proposed
intervention, using observational data. In Phase 1 (“design”), we fit a regression model
to the sample data, predicting the exposure (which we propose to intervene to change)
from confounders (expected to be unaffected). This model is used to define a propensity
score, predicting exposure probability as a function of the confounders. In Phase 2
(“analysis”), we add in the outcome data, and use the propensity score in a second
regression model to estimate a propensity–adjusted exposure effect on the outcome.
This adjusted effect is interpreted as a difference between mean outcomes in two scenario
populations, with the same propensity distribution, but different exposure levels. This
is frequently done using inverse–propensity weighting.

As an example, we use the dataset of Cattaneo (2010) (see [TE] teffects ipw),
which has 1 observation for each of 4642 pregnancies and data on self–reported maternal
smoking status, child birth weight, and a list of candidate confounders, which predict
maternal smoking and which might predict child birth weight. This dataset can be
downloaded from within Stata and described as follows:

. use https://www.stata-press.com/data/r17/cattaneo2.dta
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138154)

. desc, fu

Contains data from https://www.stata-press.com/data/r17/cattaneo2.dta
Observations: 4,642 Excerpt from Cattaneo (2010)

Journal of Econometrics 155:
138154

Variables: 23 14 Jan 2020 09:49

Variable Storage Display Value
name type format label Variable label

bweight int %9.0g Infant birthweight (grams)
mmarried byte %11.0g mmarried 1 if mother married
mhisp byte %9.0g 1 if mother hispanic
fhisp byte %9.0g 1 if father hispanic
foreign byte %9.0g 1 if mother born abroad
alcohol byte %9.0g 1 if alcohol consumed during

pregnancy
deadkids byte %9.0g Previous births where newborn

died
mage byte %9.0g Mother´s age
medu byte %9.0g Mother´s education attainment
fage byte %9.0g Father´s age
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fedu byte %9.0g Father´s education attainment
nprenatal byte %9.0g Number of prenatal care visits
monthslb int %9.0g Months since last birth
order byte %9.0g Order of birth of the infant
msmoke byte %27.0g smoke2 Cigarettes smoked during

pregnancy
mbsmoke byte %9.0g mbsmoke 1 if mother smoked
mrace byte %9.0g 1 if mother is white
frace byte %9.0g 1 if father is white
prenatal byte %9.0g Trimester of first prenatal care

visit
birthmonth byte %9.0g Month of birth
lbweight byte %9.0g 1 if low birthweight baby
fbaby byte %9.0g YesNo 1 if first baby
prenatal1 byte %9.0g YesNo 1 if first prenatal visit in 1

trimester

Sorted by:

We will concentrate on the binary maternal smoking status (mbsmoke) as a predictor
of the child’s quantitative birth weight in grams (bweight). Of the 4642 pregnancies,
864 (18.61 percent) involved mothers who admitted to smoking during pregnancy, and
there were no missing values for birth weight. The other covariates will be used in a
propensity model to predict maternal smoking during pregnancy.

In the Rubin causal model, we are allowed to find a propensity model by trial and
error in the exposure and confounder data, as long as we apply it to the outcome
data afterwards, and write it up for publication unconditionally on whether it gives the
answer we wanted to hear. We want the propensity model to predict the exposure, and
at the same time to generate propensity weights that remove (or at least reduce) any
imbalance in confounder values between the 2 exposure groups (self–reported smoking
and nonsmoking mothers). We would also like this to be done in a way that does not
lose too much power to detect a contrast in outcome between the exposure groups. And
it is also important to define the kind of contrast that we aim to measure between the
2 exposure groups.

We will summarize our trial and error process by running the Rubin causal sequence
for 4 candidate designs, based on the covariates of the cattaneo2 dataset. These designs,
corresponding to 4 combinations of 2 design matrices and 2 propensity models, are as
follows:

1. Original dataset (without outliers), logit model.

2. Original dataset, robit model with 2 df.

3. Outlier dataset (with 1 observation altered to produce an outlier), logit model.

4. Outlier dataset, robit model with 2 df.

(The 2 df robit was itself chosen by trial and error, which we are allowed to do in the
context of a Rubin causal design phase.) We will start by demonstrating the Rubin
causal design phase in detail with the first design (original dataset, logit model), and
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then proceed to presenting the other designs in less detail. The methods used will be
similar to those presented in Newson (2016).

We start by fitting the logit propensity model in the original dataset as follows:

. logit mbsmoke mmarried mhisp fhisp foreign alcohol deadkids ///
> mage medu fage fedu nprenatal monthslb order mrace frace ///
> prenatal fbaby, ///
> vce(robust)

Iteration 0: log pseudolikelihood = -2230.7484
Iteration 1: log pseudolikelihood = -1977.6794
Iteration 2: log pseudolikelihood = -1956.3216
Iteration 3: log pseudolikelihood = -1956.1193
Iteration 4: log pseudolikelihood = -1956.1191

Logistic regression Number of obs = 4,642
Wald chi2(17) = 469.16
Prob > chi2 = 0.0000

Log pseudolikelihood = -1956.1191 Pseudo R2 = 0.1231

Robust
mbsmoke Coefficient std. err. z P>|z| [95% conf. interval]

mmarried -1.023616 .1151624 -8.89 0.000 -1.24933 -.7979016
mhisp -.9928626 .3883324 -2.56 0.011 -1.75398 -.231745
fhisp -.2900995 .3653637 -0.79 0.427 -1.006199 .4260002

foreign -.6518797 .2450522 -2.66 0.008 -1.132173 -.1715863
alcohol 1.596766 .1936559 8.25 0.000 1.217207 1.976325
deadkids .3995759 .0909573 4.39 0.000 .2213028 .577849

mage -.0277733 .0113963 -2.44 0.015 -.0501096 -.005437
medu -.1092305 .0212416 -5.14 0.000 -.1508632 -.0675978
fage .0030495 .0059549 0.51 0.609 -.0086218 .0147208
fedu -.0540416 .0144029 -3.75 0.000 -.0822709 -.0258124

nprenatal -.0295687 .011578 -2.55 0.011 -.0522611 -.0068763
monthslb .0060745 .0015118 4.02 0.000 .0031115 .0090375

order -.0141329 .0512791 -0.28 0.783 -.114638 .0863722
mrace .5774233 .2231685 2.59 0.010 .1400211 1.014826
frace .2472658 .2182185 1.13 0.257 -.1804346 .6749662

prenatal .1004235 .0765748 1.31 0.190 -.0496603 .2505073
fbaby -.3276605 .1316204 -2.49 0.013 -.5856319 -.0696892
_cons 1.175976 .3416339 3.44 0.001 .5063856 1.845566

We then compute the propensity score, equal, for each subject, to the estimated prob-
ability of smoking for that subject:

. cap drop propscor

. predict propscor
(option pr assumed; Pr(mbsmoke))

. lab var propscor "Propensity score"

. summ propscor, detail

Propensity score

Percentiles Smallest
1% .0216587 .0067189
5% .0459129 .0069247
10% .0589656 .0077027 Obs 4,642
25% .0888048 .0094055 Sum of wgt. 4,642



12 Robit regression in Stata

50% .1421662 Mean .1861267
Largest Std. dev. .1405168

75% .2434112 .8819793
90% .3807587 .8905958 Variance .019745
95% .4689913 .8947034 Skewness 1.682102
99% .6907851 .9081622 Kurtosis 6.30969

We see that subjects in the dataset have fitted probabilities of smoking ranging from
.0067 to .9082. We would like to estimate average treatment effect (ATE) weights,
sometimes known simply as inverse probability of treatment weights (IPTW). These
can be used to estimate the difference in mean birthweight between 2 fantasy scenarios,
defined as alternative versions of the dataset, one where all mothers admit to smoking
during pregnancy and one where no mothers admit to smoking during pregnancy, both
with other covariate values the same as in the original dataset. These weights are
computed as follows:

. cap drop propwt

. gene propwt=cond(mbsmoke,1/propscor,1/(1-propscor))

. lab var propwt "Propensity ATE weight"

. summ propwt, detail

Propensity ATE weight

Percentiles Smallest
1% 1.022138 1.006764
5% 1.048729 1.006973
10% 1.063403 1.007763 Obs 4,642
25% 1.099818 1.009495 Sum of wgt. 4,642

50% 1.182591 Mean 1.968402
Largest Std. dev. 2.326476

75% 1.524615 28.72898
90% 3.91102 31.86331 Variance 5.412493
95% 6.362721 34.80801 Skewness 5.487046
99% 11.37603 38.67091 Kurtosis 50.21069

We see that the propensity ATE weights vary from 1.007 to 38.671.

To check whether these weights balance out the association of smoking with the
propensity score and its component covariates, we will use Somers’ D statistics for these
associations, unweighted and weighted by the propensity ATE weights. Somers’ D is
discussed in Newson (2006) and Newson (2002) as an asymmetric measure of association,
on a scale from -1 to 1, and related to Harrell’s c–index c(V |X) (also known as the
ROC area of V with respect to X) by the formula D(V |X) = 2c(V |X) − 1, where X
is the binary exposure variable and V can be either an outcome variable, a propensity
score, or a confounder. In a propensity balance–checking context, it has advantages
over the more commonly used standardized exposed–unexposed differences, used by
official Stata’s teffects command (see [TE] teffects ipw) and by Mark Lunt’s pbalchk
package (found by typing findit pbalchk in Stata). In particular, under a wide variety
of regression models, D(V |X) can be transformed to give a predictive treatment effect
of X on V . For instance, if X and V are both binary, then D(V |X) is exactly the
difference between Pr(V = 1|X = 1) and Pr(V = 1|X = 0). And, if X is binary and V
is conditionally equal–variance Normal, with different conditional means for each value
of X and a common standard deviation (SD), and D(V |X) is between −0.5 and +0.5,
then 2D(V |X) is approximately the difference between the conditional means given
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X = 1 and X = 0, expressed in units of the common SD. And, as D(V |X) is invariant
under any monotone–increasing Normalizing and variance–stabilizing transform on V ,
2D(V |X) will be approximately the standardized difference between the corresponding
conditional means of the transformed V . So, either way, for a confounder or propensity
score W , a small propensity–weighted Somers’ D(W |X) can be used to give an upper
bound to the spurious treatment effect on an outcome Y attributable to W , because a
larger D(Y |X) cannot be secondary to a smaller D(W |X) with the same sign. And,
a large propensity–weighted D(W |X) indicates a problem of non–overlap, which our
weighting has not balanced.

In our case, we measure the unweighted Somers’ D values of the propensity score,
and its component covariates, with respect to the exposure using the Stata command

. somersd mbsmoke propscor mmarried mhisp fhisp foreign alcohol deadkids ///
> mage medu fage fedu nprenatal monthslb order mrace frace prenatal fbaby ///
> , tdist

and the corresponding propensity–weighted Somers’ D values using the Stata command

. somersd mbsmoke propscor mmarried mhisp fhisp foreign alcohol deadkids ///
> mage medu fage fedu nprenatal monthslb order mrace frace prenatal fbaby ///
> [pwei=propwt], tdist

And, instead of trying to digest the printed somersd output, we will look at Figure 3,
which plots the unweighted and ATE–weighted indices against the propensity score and
its component covariates. We see, from the unweighted indices, that the propensity
score predicts smoking positively, and that its component covariates predict smoking
positively or negatively. We also observe, from the ATE–weighted indices, that the ATE
weights balance out most (but not quite all) of the predictive power, implying a limit to
the potential spurious ATE attributable to residual confounding. Note that we have not
included confidence intervals and P–values, as we are not really worrying about whether
these associations arose by chance. We are worrying about whether these associations
could be primary to whatever exposure–outcome associations may be discovered, once
the outcome data are included.

Has the balancing power been won at the cost of inflating the confidence intervals for
the outcome effects? We can answer this question using the SSC package haif, which
measures homoskedastic adjustment inflation factors (often known as variance inflation
factors). We can measure variance inflation caused either by including confounders in an
outcome model or by using the confounders to compute propensity weights, under the
pessimistic assumption that the confounder adjustment is not really necessary, because
the “confounders” predict only the exposure, not the outcome. General principles of
variance inflation can be found in Seber and Lee (2003). In our case, we imagine that
we will fit a regression model for birthweight with 2 parameters, namely an intercept
measuring average birthweights for babies with nonsmoking mothers, and a smoking
effect (the ATE) measuring the difference in average birthweights between smoking and
nonsmoking mothers, with ATE–weighted Huber variances. The output produced is as
follows:

. haif mbsmoke, pwei(propwt)
Number of observations: 4642
Homoskedastic adjustment inflation factors
for variances and standard errors:

Variance SE
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mbsmoke 1.499336 1.224474
_cons 1.072645 1.035686

The 2 columns of the listed output matrix contain inflation factors for the variances
and standard errors, respectively. And the 2 rows correspond to the 2 parameters
estimated, namely the smoking effect (the ATE) and the intercept estimating mean
outcome for babies with nonsmoking mothers. We see that, if the confounders predict
only smoking and not birthweight, then, for the ATE, variances (and therefore sample
numbers required for a specified power) will be inflated by a factor of 1.499, and standard
errors (and therefore confidence interval widths) will be inflated by a factor of 1.224.

We might decide, in the light of this design phase, to proceed to the analysis phase,
and to measure the effect of smoking on birthweight, adjusted for the confounders. If
we do this, then we fit a regression model of the outcome bweight with respect to the
exposure mbsmoke, using the ATE weights as probability weights, as follows:

. regress bweight ibn.mbsmoke [pweight=propwt],noconst vce(robust) nohead
(sum of wgt is 9,137.32200610638)

Robust
bweight Coefficient std. err. t P>|t| [95% conf. interval]

mbsmoke
Nonsmoker 3404.982 9.749963 349.23 0.000 3385.867 3424.096

Smoker 3169.984 25.17523 125.92 0.000 3120.628 3219.339

The parameters here are the counterfactual scenario means for the dream scenario
(where no mothers smoke) and the nightmare scenario (where all mothers smoke). We
see that the mean birthweight is 3404.982 grams in the dream scenario and 3169.984
grams in the nightmare scenario. The nightmare–dream scenario difference is the ATE,
and can be estimated using the SSC package lincomest, a version of lincom that saves
its results as estimation results. (This enables us to tabulate the estimates, using the
SSC packages parmest and listtab.)

. lincomest 1.mbsmoke-0.mbsmoke
Confidence interval for formula:
1.mbsmoke-0.mbsmoke

bweight Coefficient Std. err. t P>|t| [95% conf. interval]

(1) -234.998 26.9973 -8.70 0.000 -287.9256 -182.0705

We see that the ATE is -234.998 grams (95% CI, -287.926 to -182.071 grams). Note that
the regression model is the same as the one assumed when we used haif, but with a
different initial parameterization (two scenario means). The most interesting parameter
(the ATE) is the one estimated using lincomest.

Alternatively, we might not proceed immediately to the analysis phase, but instead
try out other designs. For the second design (original data, robit model), instead of
using logit, we use robit with 2 df:

. robit mbsmoke mmarried mhisp fhisp foreign alcohol deadkids ///
> mage medu fage fedu nprenatal monthslb order mrace frace ///
> prenatal fbaby, ///
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> dfreedom(2) vce(robust)

Iteration 0: log pseudolikelihood = -1994.5641
Iteration 1: log pseudolikelihood = -1967.0614
Iteration 2: log pseudolikelihood = -1966.3347
Iteration 3: log pseudolikelihood = -1966.3318
Iteration 4: log pseudolikelihood = -1966.3318

Model: Robit with 2 d.f.

Number of obs: 4642
Wald chi2(17): 390.92481
Prob > chi2: 1.460e-72
Log pseudolikelihood: -1966.3318

Robust
mbsmoke Coefficient std. err. z P>|z| [95% conf. interval]

mbsmoke
mmarried -.9152632 .1062371 -8.62 0.000 -1.123484 -.7070422

mhisp -.7790951 .3695303 -2.11 0.035 -1.503361 -.0548291
fhisp -.3426513 .3532382 -0.97 0.332 -1.034985 .3496828

foreign -.539971 .2424757 -2.23 0.026 -1.015215 -.0647274
alcohol 1.295738 .1629519 7.95 0.000 .9763577 1.615118
deadkids .3706682 .0816798 4.54 0.000 .2105788 .5307576

mage -.0240536 .0112105 -2.15 0.032 -.0460258 -.0020814
medu -.0888997 .0200479 -4.43 0.000 -.128193 -.0496065
fage .000597 .0054267 0.11 0.912 -.0100391 .0112331
fedu -.0386988 .0126222 -3.07 0.002 -.0634378 -.0139597

nprenatal -.0246084 .0101487 -2.42 0.015 -.0444996 -.0047172
monthslb .0051614 .0013556 3.81 0.000 .0025045 .0078183

order -.0061435 .0460109 -0.13 0.894 -.0963233 .0840362
mrace .5372472 .1972264 2.72 0.006 .1506905 .9238038
frace .2083295 .1902149 1.10 0.273 -.1644848 .5811439

prenatal .0820835 .0651084 1.26 0.207 -.0455266 .2096936
fbaby -.3523408 .1188287 -2.97 0.003 -.5852407 -.1194409
_cons .9871871 .3059164 3.23 0.001 .387602 1.586772

This time, the parameters are even less easy to understand, as they are expressed in
robit units with 2 degrees of freedom. However, we can still compute propensity scores
and ATE weights and do balance checks and variance inflation checks as before.

For the outlier designs, we identify a candidate outlier in the original dataset by
choosing the subject with the lowest smoking propensity score under the logit model:

. summ propscor

Variable Obs Mean Std. dev. Min Max

propscor 4,642 .1861267 .1405168 .0067189 .9081622

. gene byte candout=propscor==r(min)

. lab var candout "1 if candidate outlier"

. tab candout, m

1 if
candidate

outlier Freq. Percent Cum.

0 4,641 99.98 99.98
1 1 0.02 100.00
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Total 4,642 100.00

We see that the candidate outlier (identified by the indicator variable candout) is
unique. To make the outlier dataset, we replace the values of a few variables in the
outlier only, as follows:

. replace mage=40 if candout
(1 real change made)

. replace fage=40 if candout
(1 real change made)

. replace medu=30 if candout
(1 real change made)

. replace fedu=30 if candout
(1 real change made)

. replace nprenatal=40 if candout
(1 real change made)

. replace mbsmoke=1 if candout
(1 real change made)

. replace msmoke=1 if candout
(1 real change made)

We have revised this pregnancy (which already had a low smoking propensity) so that
the mother and father are both 40 years old, both have 30 years of full–time education
(being perpetual students), and bother their doctor sufficiently to have 40 prenatal
visits (the maximum observed in the original data). All these features will probably
predict a high social/educational rank and a low smoking propensity, as people with
such features do not often smoke. However, we then make them smokers. As very
atypical smokers, they will probably have a high propensity ATE weight. (These fantasy
parents are possibly living off trust funds and smoking ganja weed.) Having created our
pregnancy record with exceptional but credible parents, we can re–run our logit and
robit propensity models, doing the balance and variance inflation checks as before.

The balance checks for the 4 designs are done by plotting the unweighted and ATE–
weighted Somers’ D statistics as reported in Figures 3, 4, 5, and 6, respectively. We
see that the robit model on the original dataset balances the propensity score, and
the covariates, similarly to the logit model on the original dataset. However, the logit
model on the outlier dataset is a disaster, as a lot of weighted Somers’ D indices are
large in either direction, and the weighted Somers’ D for the propensity score is actually
negative. The robit model on the outlier dataset, by contrast, balances the covariates,
and its propensity score, similarly to the logit and robit models on the original dataset.

The smoking propensity score percentiles for the 4 designs are given in Table 1.
The corresponding smoking ATE weight percentiles are given in Table 2. We see that
there is an enormous maximum ATE weight of 1808.188 for the logit model in the
outlier dataset, which belongs to our generated outlier. This is probably important in
preventing these weights from balancing. By contrast, the maximum ATE weight for the
robit model in the outlier dataset is “only” 85.208, which does not seem to compromise
the balance.

The variance inflation factors for the smoking ATE are given in Table 3. These are
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Table 1: Smoking propensity score percentiles by design
Percentile:

Design 0 25 50 75 100
Original data, Logit model 0.0067 0.0888 0.1422 0.2434 0.9082
Original data, Robit model 0.0257 0.0956 0.1397 0.2302 0.8992
Outlier data, Logit model 0.0006 0.0899 0.1424 0.2422 0.8995
Outlier data, Robit model 0.0117 0.0960 0.1401 0.2301 0.8972

Table 2: Smoking propensity ATE weight percentiles by design
Percentile:

Design 0 25 50 75 100
Original data, Logit model 1.007 1.100 1.183 1.525 38.671
Original data, Robit model 1.026 1.108 1.178 1.500 22.349
Outlier data, Logit model 1.008 1.101 1.183 1.523 1808.188
Outlier data, Robit model 1.028 1.108 1.178 1.502 85.208

non–spectacular for all sets of weights, except for the weights from the logit model in the
outlier scenario. The problem here is probably the outlier again. Outliers may or may
not compromise the balance, but usually inflate the variance, at least if the covariates
predict only the exposure, and not the outcome conditionally on the exposure.

On the basis of these design–stage results, we might choose to proceed to the analysis
stage with either the robit or the logit for the original dataset, but would definitely prefer
the robit for the outlier dataset. So the robit seems to rein in the effect of outlying
pregnancies without doing any damage in the absence of outlying pregnancies.

The ATE estimates for smoking on birthweight in grams for the 4 designs (with
confidence limits and P–values) are reported in Table 4. These are all similar to each
other, except for the one for the logit model in the outlier dataset, which we would of
course have rejected in the design phase.

5 Conclusions

We have developed a new user–friendly command (robit) for robit regression, and made
available a set of user–written robit link functions (via the SSC package xlink) to be
used with the glm command. This fills a gap in the pre–existing capabilities of Stata.

Robit models have been described in the literature as a simple robust alternative
to logistic and probit models. In particular, they have been recommended for the es-
timation of inverse probability weights to adjust for missing–at–random values, or for
deriving propensity scores for causal inference. Further work to evaluate the perfor-
mance of robit models under various scenarios in these settings would be helpful.

We hope that our robit and xlink packages will be valuable additional tools in
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Figure 3: Somers’ D indices with respect to maternal smoking under Design 1.
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Figure 4: Somers’ D indices with respect to maternal smoking under Design 2.

Table 3: Variance and SE inflation factors for the smoking ATE by design
Design Variance SE
Original data, Logit model 1.499 1.224
Original data, Robit model 1.351 1.162
Outlier data, Logit model 59.749 7.730
Outlier data, Robit model 1.565 1.251
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Figure 5: Somers’ D indices with respect to maternal smoking under Design 3.
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Figure 6: Somers’ D indices with respect to maternal smoking under Design 4.

Table 4: Smoking ATE estimates for birthweight (grams) by design
Design ATE (95% CI) P
Original data, Logit model −234.998 (−287.926, −182.071) 4.4× 10−18

Original data, Robit model −236.552 (−286.111, −186.993) 1.2× 10−20

Outlier data, Logit model −456.157 (−764.952, −147.362) .0038
Outlier data, Robit model −251.693 (−307.925, −195.461) 2.4× 10−18
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Stata and will also promote sensitivity analyses, and further simulation studies.
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