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Abstract: Rank order or so-called “non-parametric” methods are in fact based on population parameters, which
are zero under the null hypothesis. Two of these parameters are Kendall’s τa and Somers’ D, the parameter
tested by a Wilcoxon rank-sum test. Confidence limits for these parameters are more informative than P -values
alone, for three reasons. First, confidence intervals show that a high P -value does not prove a null hypothesis.
Second, for continuous data, Kendall’s τa can often be used to define robust confidence limits for Pearson’s
correlation by Greiner’s relation. Third, we can define confidence limits for differences between two Kendall’s
τas or Somers’ Ds, and these are informative, because a larger Kendall’s τa or Somers’ D cannot be secondary
to a smaller one. The program somersd calculates confidence intervals for Somers’ D or Kendall’s τa, using
jackknife variances. There is a choice of transformations, including Fisher’s z, Daniels’ arcsine, Greiner’s ρ, the
z-transform of Greiner’s ρ, and Harrell’s c. A cluster option is available. The estimation results are saved as
for a model fit, so that differences can be estimated using lincom.
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Syntax

somersd
[
varlist

][
weight

][
if exp

][
in range

][
, cluster(varname) level(#) taua tdist

transf(transformation name) cimatrix(new matrix)
]

where transformation name is one of

iden | z | asin | rho | zrho | c

fweights, iweights and pweights are allowed; see [U] 14.1.6 weight. They are treated as described in
Methods and Formulas below.

Description

somersd calculates the rank order statistics Somers’ D (corresponding to rank-sum tests) and Kendall’s τa, with
confidence limits. Somers’ D or τa is calculated for the first variable of varlist as a predictor of each of the other
variables in varlist, with estimates and jackknife variances and confidence intervals output and saved in e() as if for
the parameters of a model fit. It is possible to use lincom to output confidence limits for differences between the
population Somers’ D or Kendall’s τa values.

Options

cluster(varname) specifies the variable which defines sampling clusters. If cluster is defined, then the between-
cluster Somers’ D or τa is calculated, and the variances are calculated assuming that the data are sampled from
a population of clusters, rather than a population of observations.

level(#) specifies the confidence level, in percent, for confidence intervals of the estimates; see [R] level.

taua causes somersd to calculate Kendall’s τa. If taua is absent, then somersd calculates Somers’ D.

tdist specifies that the estimates are assumed to have a t-distribution with n− 1 degrees of freedom, where n is the
number of clusters if cluster is specified, or the number of observations if cluster is not specified.

transf(transformation name) specifies that the estimates are to be transformed, defining estimates for the trans-
formed population value. iden (identity or untransformed) is the default. z specifies Fisher’s z (the hyperbolic
arctangent), asin specifies Daniels’ arcsine, rho specifies Greiner’s ρ (Pearson correlation estimated using
Greiner’s relation), zrho specifies the z-transform of Greiner’s ρ, and c specifies Harrell’s c. If the first variable
of varlist is a binary indicator of a disease and the other variables are quantitative predictors for that disease,
then Harrell’s c is the area under the reciever operating characteristic (ROC) curve.

cimatrix(new matrix) specifies an output matrix to be created, containing estimates and confidence limits for the
untransformed Somers’ D, Kendall’s τa or Greiner’s ρ parameters. If transf() is specified, then the confidence
limits will be asymmetric and based on symmetric confidence limits for the transformed parameters. This option
(like level) may be used in replay mode as well as in non-replay mode.

If a varlist is supplied, then all options are allowed. If not, then somersd replays the previous somersd estimation
(if available), and the only options allowed are level and cimatrix.
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Methods and Formulas

The population value of Kendall’s τa (Kendall, 1970) is defined as

τXY = E [sign(X1 −X2) sign(Y1 − Y2)] , (1)

where (X1, Y1) and (X2, Y2) are bivariate random variables sampled independently from the same population, and
E[·] denotes expectation. The population value of Somers’ D (Somers, 1962) is defined as

DY X =
τXY

τXX
. (2)

Therefore, τXY is the difference between two probabilities, namely the probability that the larger of the two X-values
is associated with the larger of the two Y -values and the probability that the larger X-value is associated with the
smaller Y -value. DY X is the difference between the two corresponding conditional probabilities, given that the two
X-values are not equal. Somers’ D is related to Harrell’s c index by the formula D = 2c− 1 (see Harrell et al., 1982
and Harrell et al., 1996). Kendall’s τa is the covariance between sign(X1 −X2) and sign(Y1 − Y2), whereas Somers’
D is the regression coefficient of sign(Y1 − Y2) with respect to sign(X1 −X2). (The correlation coefficient between
sign(X1 −X2) and sign(Y1 − Y2) is known as Kendall’s τb, and is the geometric mean of DY X and DXY .)

Given a sample of data points (Xi, Yi), we may estimate and test the population values of Kendall’s τa and Somers’
D by the corresponding sample statistics τ̂XY and D̂Y X . These are commonly known as “non-parametric” statistics,
even though τXY and DY X are parameters. The two Wilcoxon rank-sum tests (see [R] signrank) both test hypotheses
predicting DY X = 0. The two-sample rank-sum test represents the case where X is a binary variable indicating
membership of one of two sub-populations. If the binary X-variable indicates that a patient has a disease, and the
Y -variable is a continuous diagnostic test indicator with high values indicating a high probability that the patient has
the disease, then the area A under the receiver operating characteristic (ROC) curve, or sensitivity-specificity curve,
is linked to Somers’ D by the relation DY X = 2A− 1. (See [R] roc or Hanley and McNeil, 1982.) The matched-pairs
rank-sum test represents the case where there are paired data (Wi1,Wi2), such that Xi = sign(Wi1 − Wi2), and
Yi = |Wi1 −Wi2|. Kendall’s τa is usually tested on “continuous” data, using ktau (see [R] spearman).

There are several reasons for preferring confidence intervals to P -values alone:

1. Non-statisticians often quote a “non-significant” result for a “non-parametric” test and argue as if they have
“proved” a null hypothesis, when a confidence interval would show a wide range of other hypotheses which also
fit the data.

2. In the case of continuous bivariate data, there is a correspondence between Kendall’s τa and the more familiar
Pearson’s correlation coefficient ρ, known as Greiner’s relation (Kendall, 1970). This states that

ρ = sin
(π

2
τa

)
, (3)

and holds if the joint distribution of X and Y is bivariate normal. Under this relation, Kendall’s τa-values
of 0, ± 1

3 , ± 1
2 and ±1 correspond to Pearson’s correlations of 0, ± 1

2 , ± 1√
2

and ±1, respectively. A similar
correspondence is likely to hold in a wider range of continuous bivariate distributions (Kendall, 1949; Newson,
1987).

3. Kendall’s τa has the desirable property that a larger τa cannot be secondary to a smaller τa. That is to say, if
a positive τXY is caused entirely by a monotonic positive relationship of both variables with a third variable
W , then τWX and τWY must both be greater than τXY . If we can show that τXY − τWY > 0 (or, equivalently,
that DXY −DWY > 0), then this implies that the correlation between X and Y is not caused entirely by the
influence of W .

To understand the third point, assume that trivariate data points (Wi, Xi, Yi) are sampled independently from
a common population, with discrete probability mass function fW,X,Y (·, ·, ·) and marginal probability mass function
fW,X(·, ·). Define the conditional expectation

Z(w1, x1, w2, x2) = E [sign(Y2 − Y1)|W1 = w1, X1 = x1,W2 = w2, X2 = x2] (4)

for any w1 and w2 in the range of W -values and any x1 and x2 in the range of X-values. If we state that the positive
relationship between Xi and Yi is caused entirely by a monotonic positive relationship between both variables and
Wi, then that is equivalent to stating that

Z(w1, x1, w2, x2) ≥ 0 (5)
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whenever w1 ≤ w2 and x2 ≤ x1. However, the difference between the two τa coefficients is

τWY − τXY =2
∑
w

∑
x2<x1

fW,X(w, x1) fW,X(w, x2) Z(w, x1, w, x2)

+ 2
∑

x

∑
w1<w2

fW,X(w1, x) fW,X(w2, x) Z(w1, x, w2, x)

+ 4
∑

w1<w2

∑
x2<x1

fW,X(w1, x1) fW,X(w2, x2) Z(w1, x1, w2, x2). (6)

This difference must be non-negative whenever the inequality (5) applies. In particular, if the distribution of the Wi

and Xi is nearly continuous, then the difference (6) will be dominated by the third term, representing discordant
(Wi, Xi)-pairs. The difference between τa-values will then be determined by the ordering of the Y -values when the
larger of two W -values is associated with the smaller of two X-values.

We now define the formulae for estimating τXY , DY X and their differences. We assume the general case where
the observations are clustered, which becomes the familiar unclustered case when there is one observation per
cluster. Suppose there are n clusters, and the hth cluster contains mh observations. Define whi, Xhi and Yhi to be
the importance weight, X-value and Y -value, respectively, for the ith observation of the hth cluster. (Like most
estimation commands, somersd treats iweights and pweights as importance weights, and treats fweights as if
they denoted a number of identical observations.) Define

vhijk =
{

whiwjk, h 6= j
0, h = j

t
(XY )
hijk =whiwjk sign(Xhi −Xjk) sign(Yhi − Yjk) (7)

(for any two observations). We will use the usual dot-substitution notation to define (for instance)

vh.j. =
mh∑

i=1

mj∑

k=1

vhijk, t
(XY )
h.j. =

mh∑

i=1

mj∑

k=1

t
(XY )
hijk , vh... =

n∑

j=1

vh.j., t
(XY )
h... =

n∑

j=1

t
(XY )
h.j. , (8)

and any other sums over any other indices. Given that the clusters are sampled independently from a common
population of clusters, we can define

V = E [vh.j.] , TXY = E
[
t
(XY )
h.j.

]
, (9)

for all h 6= j. (In the terminology of Hoeffding (1948), these quantities are regular functionals of the cluster population
distribution, and the expressions inside the square brackets are kernels of these regular functionals.) The quantities
we really want to estimate are Kendall’s τa and Somers’ D, defined respectively by

τXY = TXY /V, DY X = TXY /TXX = τXY /τXX . (10)

(These are equal to the familiar formulae (1) and (2) if each cluster contains one observation with an importance
weight of one.) To estimate these, we use the jackknife method of Arvesen (1969) on the regular functionals (9) and
use appropriate Taylor polynomials. The functionals V and TXY are estimated by the Hoeffding (1948) U -statistics

V̂ =
v....

n(n− 1)
, T̂XY =

t(XY )
....

n(n− 1)
, (11)

and the respective jackknife pseudovalues corresponding to the hth cluster are given by

ψ
(V )
h =(n− 1)−1v.... − (n− 2)−1 [v.... − 2vh...] ,

ψ
(XY )
h =(n− 1)−1t(XY )

.... − (n− 2)−1
[
t(XY )
.... − 2t

(XY )
h...

]
. (12)

somersd calculates correlation measures for a single variable X with a set of Y -variates (Y (1), . . . , Y (p)). It calculates,
in the first instance, the covariance matrix for V̂ , T̂XX , and T̂XY (i) for 1 ≤ i ≤ p. This is done using the jackknife
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influence matrix Υ, which has n rows labelled by the cluster subscripts, and p+2 columns labelled (in Stata fashion)
by the names V , X, and Y (i) for 1 ≤ i ≤ p. It is defined by

Υ [h, V ] = ψ
(V )
h − V̂ , Υ [h,X] = ψ

(XX)
h − T̂XX , Υ

[
h, Y (i)

]
= ψ

(XY (i))
h − T̂XY (i) . (13)

The jackknife covariance matrix is then equal to

Ĉ = [n(n− 1)]−1 Υ′Υ. (14)

The estimates for Kendall’s τa and Somers’ D, for variables Y and X, are defined by

τ̂XY = T̂XY /V̂ , D̂Y X = T̂XY /T̂XX , (15)

and the covariance matrices are defined using Taylor polynomials. In the case of Somers’ D, we define the p× (p+2)
matrix of estimated derivatives Γ̂(D), whose rows are labelled by the names Y (1), . . . , Y (p), and whose columns are
labelled by V, X, Y (1), . . . , Y (p). This matrix is defined by

Γ̂(D)
[
Y (i), X

]
=

∂D̂Y (i)X

∂T̂XX

= − T̂XY (i)

T̂ 2
XX

,

Γ̂(D)
[
Y (i), Y (i)

]
=

∂D̂Y (i)X

∂T̂XY (i)

=
1

T̂XX

, (16)

all other entries being zero. In the case of Kendall’s τa, we define a (p + 1)× (p + 2) matrix of estimated derivatives
Γ̂(τ), whose rows are labelled by X,Y (1), . . . , Y (p), and whose columns are labelled by V, X, Y (1), . . . , Y (p). This
matrix is defined by

Γ̂(τ) [X, V ] =
∂τ̂XX

∂V̂
= − T̂XX

V̂ 2
,

Γ̂(τ) [X, X] =
∂τ̂XX

∂T̂XX

=
1
V̂

,

Γ̂(τ)
[
Y (i), V

]
=

∂τ̂XY (i)

∂V̂
= − T̂XY (i)

V̂ 2
,

Γ̂(τ)
[
Y (i), Y (i)

]
=

∂τ̂XY (i)

∂T̂XY (i)

=
1
V̂

, (17)

all other entries again being zero. The estimated dispersion matrices of the Somers’ D and τa estimates are therefore
Ĉ(D) and Ĉ(τ), respectively, defined by

Ĉ(D) = Γ̂(D) Ĉ Γ̂(D) ′, Ĉ(τ) = Γ̂(τ) Ĉ Γ̂(τ) ′. (18)

The transf() option offers a choice of transformations. Since these are available both for Somers’ D and for Kendall’s
τa, we will denote the original estimate as θ (which can stand for D or τ) and the transformed estimate as ζ. They
are summarized below, together with their derivatives dζ/dθ and their inverses θ(ζ).
transf() Transform name ζ(θ) dζ/dθ θ(ζ)

iden Untransformed θ 1 ζ

z Fisher’s z arctanh(θ) =
(
1− θ2

)−1 tanh(ζ) =
1
2 log[(1 + θ)/(1− θ)] [exp(2ζ)− 1]/[exp(2ζ) + 1]

asin Daniels’ arcsine arcsin(θ)
(
1− θ2

)−1/2 sin(ζ)
rho Greiner’s ρ sin(π

2 θ) π
2 cos(π

2 θ) (2/π) arcsin(ζ)
zrho Greiner’s ρ arctanh[sin(π

2 θ)] π
2 cos(π

2 θ)[1− sin(π
2 θ)2]−1 (2/π) arcsin[tanh(ζ)]

(z-transformed)
c Harrell’s c (θ + 1)/2 1/2 2ζ − 1
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If transf() is specified, then somersd displays and saves the transformed estimates and their estimated
covariance, instead of the untransformed versions. If Ĉ(θ) is the covariance matrix for the untransformed estimates
given by (18), and Γ̂(ζ) is the diagonal matrix whose diagonal entries are the dζ/dθ estimates specified in the table,
then the transformed parameter and its covariance matrix are

ζ̂ = ζ(θ̂), Ĉ(ζ) = Γ̂(ζ) Ĉ(θ) Γ̂(ζ) ′. (19)

Fisher’s z-transform was originally recommended for the Pearson correlation coefficient by Fisher (1921) (see
also Gayen (1951)), but Edwardes (1995) recommended it specifically for Somers’ D on the basis of simulation
studies. Daniels’ arcsine was suggested as a normalizing transform in Daniels and Kendall (1947). If transf(z)
or transf(asin) is specified, then somersd prints asymmetric confidence intervals for the untransformed D or τa

values, calculated from symmetric confidence intervals for the transformed parameters using the inverse function
θ(ζ). (This feature corresponds to the eform option of other estimation commands.) Greiner’s ρ (Kendall, 1970)
is based on the relation (3), and is designed to estimate the Pearson correlation coefficient corresponding to the
measured τa. If transf(zrho) is specified, somersd prints asymmetric confidence intervals for Greiner’s ρ, using
the inverse z-transform on symmetric confidence intervals for the z-transformed Greiner’s ρ. Harrell’s c is usually a
reparameterization of Somers’ D, and is recommended in Harrell et al. (1982) and Harrell et al. (1996) as a general
measure of the predictive power of a prognostic score arising from a medical test.

Example 1

In the auto data, we compare US cars with foreign cars regarding weight and fuel efficiency. First, we use
ranksum to give significance tests without confidence intervals:

. ranksum mpg,by(foreign)
Two-sample Wilcoxon rank-sum (Mann-Whitney) test

foreign | obs rank sum expected
-------------+---------------------------------

Domestic | 52 1688.5 1950
Foreign | 22 1086.5 825

-------------+---------------------------------
combined | 74 2775 2775

unadjusted variance 7150.00
adjustment for ties -36.95

----------
adjusted variance 7113.05
Ho: mpg(foreign==Domestic) = mpg(foreign==Foreign)

z = -3.101
Prob > |z| = 0.0019

. ranksum weight,by(foreign)
Two-sample Wilcoxon rank-sum (Mann-Whitney) test

foreign | obs rank sum expected
-------------+---------------------------------

Domestic | 52 2379.5 1950
Foreign | 22 395.5 825

-------------+---------------------------------
combined | 74 2775 2775

unadjusted variance 7150.00
adjustment for ties -1.06

----------
adjusted variance 7148.94
Ho: weight(foreign==Domestic) = weight(foreign==Foreign)

z = 5.080
Prob > |z| = 0.0000

We note that US cars are typically heavier and travel fewer miles per gallon than foreign cars. For confidence
intervals, we use somersd:



6 Post-publication update RBN-1

. somersd foreign mpg weight
Somers’ D with variable: foreign
Transformation: Untransformed
Valid observations: 74
Symmetric 95% CI
------------------------------------------------------------------------------

| Jackknife
foreign | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
mpg | .4571678 .135146 3.38 0.001 .1922866 .7220491

weight | -.7508741 .0832485 -9.02 0.000 -.9140383 -.58771
------------------------------------------------------------------------------

We see that, given a randomly-chosen foreign car and a randomly-chosen US car, the foreign car is 46% more
likely to travel more miles per gallon than the US car than vice versa, with confidence limits from 19% to 72% more
likely. However, being foreign seems to be more reliable as a negative predictor of weight than as a positive predictor
of “fuel efficiency”. We can use lincom to define confidence limits for the difference:

. lincom -weight-mpg
( 1) - mpg - weight = 0

------------------------------------------------------------------------------
foreign | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
(1) | .2937063 .0884397 3.32 0.001 .1203677 .4670449

------------------------------------------------------------------------------

The difference between Somers’ D-values is positive. This indicates that, if there are two cars, one heavier and
consuming fewer gallons per mile, the other lighter and consuming more gallons per mile, then the second is more
likely to be foreign. So maybe 1970s US cars were not as wasteful as some people think, and were, if anything, more
fuel-efficient for their weight than non-US cars at the time. Figure 1 illustrates this graphically. Data points are
domestic cars (“D”) and foreign cars (“F”). A regression analysis could show the same thing, but Somers’ D shows
it in stronger terms, without contentious assumptions such as linearity. (On the other hand, a regression model is
more informative if its assumptions are true, so the two methods are mutually complementary.)
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Figure 1. Mileage and weight in US cars (D) and non-US cars (F)
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The confidence intervals for such high values of Somers’ D would probably be more reliable if we used the
z-transform, recommended by Edwardes (1995). The results of this are as follows:

. somersd foreign mpg weight,tran(z)
Somers’ D with variable: foreign
Transformation: Fisher’s z
Valid observations: 74
Symmetric 95% CI for transformed Somers’ D
------------------------------------------------------------------------------

| Jackknife
foreign | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
mpg | .4937249 .1708551 2.89 0.004 .1588551 .8285947

weight | -.9749561 .1908547 -5.11 0.000 -1.349024 -.6008878
------------------------------------------------------------------------------
Asymmetric 95% CI for untransformed Somers’ D

Somers_D Minimum Maximum
mpg .45716783 .15753219 .67972072

weight -.75087413 -.87382282 -.53768098
. lincom -weight-mpg
( 1) - mpg - weight = 0

------------------------------------------------------------------------------
foreign | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
(1) | .4812312 .1235452 3.90 0.000 .2390871 .7233753

------------------------------------------------------------------------------

Note that somersd gives not only symmetric confidence limits for the z-transformed Somers’ D estimates, but
also the more informative asymmetric confidence limits for the untransformed Somers’ D estimates (corresponding
to the eform option). The asymmetric confidence limits for the untransformed estimates are closer to zero than
the symmetric confidence limits for the untransformed estimates in the previous output, and are probably more
realistic. The output to lincom gives confidence limits for the difference between z-transformed Somers’ D values.
This difference is expressed in z-units, but must, of course, be in the same direction as the difference between
untransformed Somers’ D values. The conclusions are similar.

Example 2

In this example, we demonstrate Kendall’s τa by comparing weight (pounds) and displacement (cubic inches)
as predictors of fuel efficiency (miles per gallon). We first use ktau to carry out significance tests with no confidence
limits:

. ktau mpg mpg
Number of obs = 74

Kendall’s tau-a = 0.9471
Kendall’s tau-b = 1.0000
Kendall’s score = 2558

SE of score = 212.989 (corrected for ties)
Test of Ho: mpg and mpg are independent

Prob > |z| = 0.0000 (continuity corrected)
. ktau mpg weight

Number of obs = 74
Kendall’s tau-a = -0.6857
Kendall’s tau-b = -0.7059
Kendall’s score = -1852

SE of score = 213.605 (corrected for ties)
Test of Ho: mpg and weight are independent

Prob > |z| = 0.0000 (continuity corrected)
. ktau mpg displ

Number of obs = 74
Kendall’s tau-a = -0.5942
Kendall’s tau-b = -0.6257
Kendall’s score = -1605

SE of score = 212.850 (corrected for ties)
Test of Ho: mpg and displ are independent

Prob > |z| = 0.0000 (continuity corrected)

We then use somersd (with the taua option and the z-transform) to compute the same statistics with confidence
limits. Note that somersd also outputs the τa of mpg with mpg, which is simply the probability that two independently
sampled mpg-values are not equal.
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. somersd mpg weight displ,taua tr(z)
Kendall’s tau-a with variable: mpg
Transformation: Fisher’s z
Valid observations: 74
Symmetric 95% CI for transformed Kendall’s tau-a
------------------------------------------------------------------------------

| Jackknife
mpg | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
mpg | 1.802426 .0748368 24.08 0.000 1.655748 1.949103

weight | -.8397412 .084022 -9.99 0.000 -1.004421 -.6750612
displ | -.6841711 .093055 -7.35 0.000 -.8665556 -.5017866

------------------------------------------------------------------------------
Asymmetric 95% CI for untransformed Kendall’s tau-a

Tau_a Minimum Maximum
mpg .94705665 .92964223 .96024957

weight -.68567197 -.76344472 -.58829928
displ -.59422436 -.69961991 -.46352103

We can use lincom to compare the two predictors and test whether smaller and heavier cars travel fewer miles
per gallon than larger and lighter cars. This seems to be the case, as weight is a more negative predictor of mpg
than displ:

. lincom weight-displ
( 1) weight - displ = 0

------------------------------------------------------------------------------
mpg | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
(1) | -.1555701 .0742717 -2.09 0.036 -.3011399 -.0100003

------------------------------------------------------------------------------

We demonstrate the cluster option using the variable manuf, equal to the first word of make, to denote
manufacturer. This analysis assumes that we are sampling from the population of car manufacturers rather than the
population of car models. The results are as follows:

. somersd mpg weight displ,taua tr(z) cluster(manuf)
Kendall’s tau-a with variable: mpg
Transformation: Fisher’s z
Valid observations: 74
Number of clusters: 23
Symmetric 95% CI for transformed Kendall’s tau-a

(standard errors adjusted for clustering on manuf)
------------------------------------------------------------------------------

| Jackknife
mpg | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
mpg | 1.83398 .0821029 22.34 0.000 1.673061 1.994898

weight | -.8391083 .0917593 -9.14 0.000 -1.018953 -.6592633
displ | -.694607 .0976751 -7.11 0.000 -.8860467 -.5031674

------------------------------------------------------------------------------
Asymmetric 95% CI for untransformed Kendall’s tau-a

Tau_a Minimum Maximum
mpg .95021392 .93195521 .96366535

weight -.68533644 -.76943983 -.57787293
displ -.60093349 -.70943563 -.46460448

. lincom weight-displ
( 1) weight - displ = 0

------------------------------------------------------------------------------
mpg | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
(1) | -.1445012 .0801437 -1.80 0.071 -.30158 .0125775

------------------------------------------------------------------------------

Note that, in contrast to the case of most estimation commands, the cluster option affects the estimates
as well as their standard errors. This is because the clustered estimates are calculated only from between-cluster
comparisons, in this case pairs of car models from different manufacturers.

Suppose that we are writing for an audience more familiar with Pearson’s correlation than with Kendall’s τa.
To estimate the Pearson correlations corresponding to our τa coefficients, we use the zrho transform. The results
are as follows:
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. somersd mpg weight displ,taua tr(zrho)
Kendall’s tau-a with variable: mpg
Transformation: z-transform of Greiner’s rho
Valid observations: 74
Symmetric 95% CI for transformed Greiner’s rho
------------------------------------------------------------------------------

| Jackknife
mpg | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
mpg | 3.179521 .1458796 21.80 0.000 2.893602 3.465439

weight | -1.378273 .1475561 -9.34 0.000 -1.667478 -1.089069
displ | -1.108838 .158893 -6.98 0.000 -1.420262 -.7974132

------------------------------------------------------------------------------
Asymmetric 95% CI for untransformed Greiner’s rho

Rho Minimum Maximum
mpg .99654393 .99388566 .99804762

weight -.88056403 -.93121746 -.79653796
displ -.80365118 -.88965364 -.66258811

The τa of -0.59 between displacement and fuel efficiency (from the unclustered output) is seen to correspond to
a more impressive Pearson correlation of 0.80. The estimated Greiner’s ρ is probably less likely to be oversensitive
to outliers than the usual Pearson coefficient.

Saved results

somersd saves in e():
Scalars

e(N) number of observations e(df r) residual degrees of freedom (if tdist present)

e(N clust) number of clusters

Macros

e(cmd) somersd e(param) parameter (somersd or taua)

e(parmlab) parameter label in output e(tdist) tdist if specified

e(depvar) name of X-variable e(clustvar) name of cluster variable

e(vcetype) covariance estimation method (Jackknife) e(wtype) weight type

e(wexp) weight expression e(predict) program called by predict (set to somers p)

e(transf) transformation specified by transf e(tranlab) transformation label in output

Matrices

e(b) coefficient vector e(V) variance-covariance matrix of the estimators

Functions

e(sample) marks estimation sample

Note that (confusingly) e(depvar) is the X-variable, or predictor variable, in the conventional terminology for
defining Somers’ D. somersd is also different from most estimation commands in that its results are not designed to
be used by predict. If the user tries to do so, then the program somers p is called, and tells the user that predict
should not be used after somersd.

Historical note

This document is a post-publication update of an article which appeared in the Stata Technical Bulletin
(STB) as Newson (2000a). The somersd package was later revised in Newson (2000b), Newson (2000c), Newson
(2000d), Newson (2001a) and Newson (2001b). An important upgrade (Newson, 2000d) was the addition to the
somersd package of the program cendif, which calculates robust confidence intervals for Hodges-Lehmann median
differences, other percentile differences, and percentile ratios. A post-publication update of that STB article is
distributed with this document as part of the documentation to the somersd package. After 2001, STB was replaced
by The Stata Journal (SJ), and all subsequent updates only appeared on SSC and on Roger Newson’s homepage at
http://www.kcl-phs.org.uk/rogernewson, which is accessible from within net-aware Stata. However, Newson (2002)
gives a comprehensive review of Somers’ D, Kendall’s τa, median differences, and their estimation in Stata using the
somersd package.
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