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Abstract: A program is presented for calculating robust confidence intervals for generalized Theil–Sen median (and
other percentile) slopes (and per–unit ratios) of a variable Y with respect to a variable X. The confidence
intervals are robust to the possibility that the conditional population distributions of Y , given different values
of X, differ in ways other than location, such as having unequal variances. The program uses the program
somersd, and is part of the somersd package.
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1 Syntax

censlope yvarname xvarname
[

weight
][

if exp
][

in range
][

, centile(numlist) eform

ystargenerate(newvarlist) estaddr somersd options iteration options
]

where yvarname and xvarname are variable names, somersd options are any of the options used by somersd, and
iteration options are any of the options described under Iteration options.

fweights, iweights and pweights are allowed; see help for weight. They are interpreted as for somersd.

bootstrap, by, jackknife, and statsby are allowed; see help for prefix.

1.1 Description

censlope calculates confidence intervals for generalized Theil–Sen median slopes, and other percentile slopes, of
a Y –variable specified by yvarname with respect to an X–variable specified by xvarname. These confidence intervals
are robust to the possibility that the population distributions of the Y –variable, conditional on different values of the
X–variable, are different in ways other than location. This might happen if, for example, the conditional distributions
had different variances. For positive–valued Y –variables, censlope can be used to calculate confidence intervals for
median per–unit ratios, or other percentile per–unit ratios, associated with a unit increment in the X–variable. if
the X–variable is binary with values 0 and 1, then the generalized Theil–Sen percentile slopes are the generalized
Hodges–Lehmann percentile differences between the group of observations whose X–value is 1 and the group of
observations whose X–value is 0. censlope is part of the somersd package, and requires the somersd program in
order to work. It executes the somersd command

somersd xvarname yvarname [ weight ] [ if exp ] [ in range ] [ , somersd options ]

and then estimates the percentile slopes. The estimates and confidence limits for the percentile slopes are evaluated
using an iterative numerical method, which the user may change from the default, using the iteration options.

1.2 Ordinary options

centile(numlist) specifies a list of percentile slopes to be reported, and defaults to centile(50) (median only) if
not specified. Specifying centile(25 50 75) will produce the 25th, 50th and 75th percentile differences.

eform specifies that exponentiated percentile slopes are to be given. This option is used if yvarname specifies the log
of a positive–valued variable. In this case, confidence intervals are calculated for percentile ratios or per–unit
ratios between values of the original positive variable, instead of for percentile differences or per–unit differences.

ystargenerate(newvarlist) specifies a list of variables to be generated, corresponding to the percentile slopes,
containing the differences Y ∗(β) = Y −Xβ, where β is the percentile slope. The variable names in the newvarlist
are matched to the list of percentiles specified by the centile() option, sorted in ascending order of percent.
If the two lists have different lengths, then censlope generates a number nmin of new variables equal to the
minimum length of the two lists, matching the first nmin percentiles with the first nmin new variable names.
Usually, there is only one percentile slope (the median slope), and one new ystargenerate() variable, whose
median can be used as the intercept when drawing a straight line through the data points on a scatter plot.

estaddr specifies that the results saved in r() will also be saved in e() (see Saved results). This makes it easier
to use censlope with parmby, in order to create an output dataset (or resultsset) with one observation per
by–group and data on confidence intervals for Somers’ D and median slopes. parmby is part of the package
parmest, downloadable from SSC.
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1.3 Iteration options

options description

fromabs(#) initial estimate for absolute magnitude of slopes
brackets(#) maximum number of rows for the bracket matrix
technique(algorithm spec) iterative numerical solution technique
iterate(#) perform maximum of # iterations; default is iterate(16000)
tolerance(#) tolerance for the percentile slopes
log display an iteration log of the brackets during bracket convergence

where algorithm spec is

algorithm
[

#
[

algorithm
[

#
] ]

. . .
]

and algorithm is { bisect | regula | ridders }
The censlope command calculates estimates and confidence limits for a median or other percentile slope β by

solving numerically a scalar equation in β, using an iterative method. The options controlling the exact iterative
method will probably not be used very often, because censlope is intended to have sensible defaults. However, users
who wish to change the default method may do so, using a set of options similar to the maximization options used
by Stata maximum likelihood estimation commands (see [R] maximize). These options are as follows:

fromabs(#) specifies an initial estimate of the typical absolute magnitude of a percentile slope. If fromabs() is not
specified, then it defaults to the aspect ratio (ymax− ymin)/(xmax− xmin) (where xmax and xmin are the
maximum and minimum X–values, and ymax and ymin are the maximum and minimum Y –values) if that ratio
is defined and nonzero, and to 1 otherwise. This magnitude is used in the construction of the bracket matrix.
Candidate bracket β–values will have values of zero or of ±fromabs × 2K , where K is a nonnegative integer.
The bracket matrix is a matrix with 2 columns and 3 or more rows, each row containing a candidate β–value in
column 1 and the corresponding ζ∗–value in column 2. It is used to find an initial pair of β–values for input into
the iterative numerical solution method, which attempts to find a solution in β between the two initial β–values.
The bracket matrix is initialized to have β–values −fromabs, 0 and +fromabs, and ζ∗–values corresponding to
these β–values. If a target ζ–value is outside the range of the ζ∗–values of the bracket matrix, then the bracket
matrix is extended by adding new rows before the first row by successively doubling the β–value in the first
row, or by adding new rows after the last row by successively doubling the β–value in the last row, until there
is a ζ∗–value in the second column on either size of the target ζ–value. For an explanation of this terminology,
see Methods and formulas below.

brackets(#) specifies a maximum number of rows for the bracket matrix. The minimum is brackets(3). The
default is brackets(1000).

technique(algorithm spec) specifies an iterative solution method for finding a solution in β to the equation to be
solved. The following algorithms are currently implemented in censlope.

technique(bisect) specifies an adapted version of the bisection method for step functions.

technique(regula) specifies an adapted version of the regula falsi (or false position) method for step functions.

technique(ridders) specifies an adapted version of the method of Ridders (1979) for step functions.

The default is technique(ridders 5 bisect iterate), where iterate is the value of the iterate() option. The
bisection method is guaranteed to converge in a number of iterations similar to the binary logarithm of the
tolerance() option. The regula falsi and Ridders methods are usually faster if the ζ∗–function is very nearly
continuous, but may sometimes be slower if the ζ∗–function is a very discrete step function. All methods are
modified versions, for step functions, of the methods of the same names described in Press et al. (1992).

You can switch between algorithms by specifying more than one in the technique() option. By default, censlope
will use an algorithm for five iterations before switching to the next algorithm. To specify a different number of
iterations, include the number after the technique in the option. For example, specifying technique(ridders
10 bisect 1000) requests that censlope perform 10 iterations using the Ridders algorithm, perform 1000
iterations using the bisection algorithm, and then switch back to Ridders for 10 iterations, and so on. The
process continues until convergence, or until the maximum number of iterations is reached.

iterate(#) specifies the maximum number of iterations. When the number of iterations equals iterate(), the
iterative solution program stops and records failure to converge. If convergence is declared before this threshold
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is reached, it will stop when convergence is declared. The default value of iterate(#) is the current value of
set maxiter, which is iterate(16000) by default.

tolerance(#) specifies the tolerance for the percentile differences. When the relative difference between the cur-
rent β–brackets is less than or equal to tolerance(), the tolerance() convergence criterion is satisfied.
tolerance(1e-6) is the default.

log specifies that an iteration log showing the progress of the numerical solution method is to be displayed. Note
that, if an iteration log is displayed, then there will be 4 separate iteration sequences per percentile, estimating
the left estimate, the right estimate, the lower confidence limit, and the upper confidence limit, respectively.
For this reason, the default is not to produce an iteration log. However, if censlope is expected to be slow (as
in the case of very large datasets), then an iteration log can be specified to reassure the user that progress is
being made.

1.4 Saved results

censlope saves the following results in r():
Scalars

r(level) confidence level

r(fromabs) value of the fromabs() option

r(tolerance) value of the tolerance() option

Macros

r(yvar) name of the Y-variable

r(xvar) name of the X-variable

r(eform) eform if specified

r(centiles) list of percents for the percentiles

r(technique) list of techniques from the technique() option

r(tech steps) list of step numbers for the techniques

Matrices

r(cimat) confidence intervals for percentile differences or ratios

r(rcmat) return codes for entries of r(cimat)
r(bracketmat) bracket matrix

r(techstepmat) column vector of step numbers for the techniques

The matrix r(cimat) has one row per percentile, and columns containing the percents, percentile estimates,
lower confidence limits and upper confidence limits, labelled Percent, Pctl Slope, Minimum and Maximum if eform
is not specified, or Percent, Pctl Ratio, Minimum and Maximum if eform is specified. The matrix r(rcmat) has the
same numbers of rows and columns as r(cimat), with the same labels, and the first column contains the percents,
but the other entries contain return codes for the estimation of the corresponding entries of r(cimat). These return
codes are equal to 0 if the β–value was estimated successfully, 1 if the corresponding ζ∗–value could not be calculated,
2 if the corresponding ζ∗–value could not be bracketed, 3 if the β–brackets failed to converge, and 4 if the β–value
could not be calculated from the converged β–brackets. The matrix r(bracketmat) is the final version of the bracket
matrix described in the help for the fromabs() and brackets() options of censlope, and has one row per β–bracket,
and two columns, labelled Beta and Zetastar, containing the β–brackets and the corresponding ζ∗–values. The
matrix r(techstepmat) is a column vector, with one row for each of the techniques listed in the technique() option,
with a row label equal to the name of the technique and a value equal to the number of steps for that technique. The
fromabs(), brackets(), tolerance() and technique() options are described under Iteration options above.

censlope also saves in e() a full set of estimation results for the somersd command

somersd xvarname yvarname [ weight ] [ if exp ] [ in range ] [ , somersd options ]

as described in Description above. If estaddr is specified, then this set of estimation results is expanded by adding
a set of e() results with the same names and contents as the r() results. This allows the user to pass a censlope
command to parmby, producing an output dataset (or resultsset) with one observation per by–group and data on
confidence intervals for Somers’ D and for the median slope.

2 Methods and formulas

The Theil–Sen median slope was introduced by Theil (1950) and developed further by Sen (1968). If the X–
variable is binary, then the Theil–Sen slope is the Hodges–Lehmann median difference (Hodges and Lehmann, 1963).
The methods used by censlope are a generalization of the methods of Theil and Sen. They include, as a special case,
the methods used by cendif (Newson, 2000b), which calculates confidence intervals for generalized Hodges–Lehmann
median differences, and is also part of the somersd package.
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Percentile slopes are defined in terms of the parameters Somers’ D (Somers, 1962) and Kendall’s τa (Kendall
and Gibbons, 1990). A discussion of the connections between these parameters appears in Newson (2002). For the
purposes of censlope, we will define Somers D and Kendall’s τa in the very general sense used in the manual
somersd.pdf, distributed with the somersd package. Given two random variables U and V , we denote by τ(U, V )
the Kendall’s τa of U and V , and denote by D(U |V ) the Somers’ D of U with respect to V . Briefly, if two (U, V )–pairs
(Ui, Vi) and (Uj , Vj) are sampled from some population of such pairs using some sampling scheme, then τ(U, V ) is
the difference between the probability that the two (U, V )–pairs are concordant (meaning that the higher of the two
U–values is paired with the higher of the two V –values) and the probability that the two (U, V )–pairs are discordant
(meaning that the higher of the two U–values is paired with the lower of the two V –values). We define D(U |V ) as
the difference between the corresponding conditional probabilities, given that the two V –values are strictly ordered
(meaning that one V –value is known to be higher than the other V –value). Note that both τ(U, V ) and D(U |V )
are differences between probabilities, and therefore both may have values ranging from -1 (for a “perfect negative
association”) to +1 (for a “perfect positive association”), but τ(U, V ) is always symmetric in U and V , whereas
D(U |V ) is not. We will use the notation θ(U, V ) to stand for the value of either τ(U, V ) or D(U |V ) in the population,
and denote the corresponding sample value as θ̂(U, V ). The somersd package allows us to choose between Somers D
and Kendall’s τa using the taua option, and also provides other options, to specify a version of either parameter
corresponding to a specific sampling scheme.

For an outcome variable Y , a predictor variable X and a proportion q such that 0 ≤ q ≤ 1, a 100qth percentile
slope of Y with respect to X is defined as a value β satisfying

θ(Y − βX, X) = 1− 2q. (1)

If q = 0.5, then 1 − 2q = 0, and a solution in β to (1) is known as a Theil–Sen median slope (Theil, 1950; Sen,
1968). Note that there is not always a unique solution to (1) in β. If the joint population distribution of Y and X is
discrete (as are all population distributions sampled by applied statisticians in the real world), then θ(Y − βX,X)
will be a monotonically non–increasing step function of β, and there may be no exact solution, or an interval of exact
solutions. However, the confidence intervals derived here will contain any solution with the specified confidence level,
if a solution exists.

If θ( · , · ) stands for Somers’ D rather than Kendall’s τa, then the value of θ(Y − βX,X) depends only on the
conditional distribution of pairs of bivariate observations (X1, Y1) and (X2, Y2) satisfying X1 < X2. For such pairs
of observations, the pairwise slope (Y2 − Y1)/(X2 −X1) is always defined. If neither X nor Y is subject to left– or
right–censorship, then the equality (1) becomes

1− 2q = D( Y − βX |X )
= Pr( Y1 − βX1 < Y2 − βX2 ) − Pr( Y1 − βX1 > Y2 − βX2 )
= Pr[ (Y2 − Y1)/(X2 −X1) > β ] − Pr[ (Y2 − Y1)/(X2 −X1) < β ]. (2)

Therefore, a 0.5th percentile (or median) slope has the expected property that a pairwise slope is equally likely to
be above or below it. If in addition the distributions of X and Y are limited to finite sets of discrete values, then
the distribution of pairwise slopes will be bounded, and a 0th percentile slope will be any number below all possible
pairwise slopes, and a 100th percentile slope will be any number above all possible pairwise slopes.

We aim to include a value β in a confidence interval for a 100qth percentile slope if and only if the sample
θ̂(Y − βX,X) is compatible with a population θ(Y − βX, X) equal to 1 − 2q. The methods of Newson (2000a)
and Newson (2006b), used by the program somersd and updated in the manual somersd.pdf, typically use a
monotonically–increasing transformation ζ( · ), which may be Normalizing and/or variance–stabilizing when applied
to θ̂(Y − βX, X). We define

ζ∗(β) = ζ[ θ̂(Y − βX, X) ]. (3)

Note that ζ∗(β) is a randomly variable function of β, with a population standard error SE[ ζ∗(β) ], estimated
consistently by a corresponding sample standard error ŜE[ ζ∗(β) ], whose formula is one of those described in
somersd.pdf. We will assume that, if θ(Y −Xβ,X) = 1− 2q, then the pivotal quantity

[ζ∗(β) − ζ(1− 2q) ] / SE[ ζ∗(β) ] (4)

has a standard Normal distribution. In general, the sample ζ∗(β) is a monotonically non–increasing step function of
β, bounded above by ζ(−1) and below by ζ(1), either of which bounds may be infinite, depending on the choice of
transformation ζ( · ).
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Figure 1 illustrates an example of a function ζ∗(β) from the auto data. Here, the observations are car models,
the Y –variable is trunk (trunk space in cubic feet), the X–variable is foreign (a binary variable indicating non–US
origin), the transformation is the hyperbolic arctangent or Fisher’s z (as recoomended by Edwardes (1995)), and a
slope β is a difference (expressed in cubic feet) between cars made by non–US and US companies. The function ζ∗(β)
is plotted against the differences β over the range of differences for which the absolute value of ζ∗(β) is finite. (As
there are no differences between non–US and US cars above 9 cubic feet or below -18 cubic feet, the value of ζ∗(β) is
−∞ for β > 9 and +∞ for β < −18.) This plot was made using the program cendif, which is restricted to binary
X–variables, and calculates the full set of differences in the Y –variable between observations in the two groups. The
square data points give values of ζ∗(β) for differences β actually observed in the auto data, and the line gives values
of ζ∗(β) for values of β between these observed values. Note that the sample ζ∗(β) is a monotonically non–increasing
step function of β, which is discontinuous at the observed differences and constant within the open intervals between
consecutive observed differences. This implies that a unique exact solution for (1) does not usually exist, as there is
usually either no exact solution or an interval of exact solutions between two consecutive observed differences. In a
finite sample, this will be true for observed slopes in general, whether or not the X–variable is binary.

If we knew the value of SE[ζ̂∗(β)], then a 100(1 − α)% confidence interval for a 100qth percentile difference
might be the interval of values β for which

ζ(1− 2q)− zα SE[ζ̂∗(β)] ≤ ζ∗(β) ≤ ζ(1− 2q) + zα SE[ζ̂∗(β)], (5)

where zα is the 100(1− 1
2
α)th percentile of the standard Normal distribution. To construct such a confidence interval,

we proceed as follows. Given a value ζ in the range of ζ( · ), we define

BL(ζ) = sup {β : ζ∗(β) > ζ} , BR(ζ) = inf {β : ζ∗(β) < ζ} ,

BC(ζ) =





Undefined, if BL(ζ) = −∞ and BR(ζ) = ∞,
BL(ζ), if BL(ζ) > −∞ and BR(ζ) = ∞,
BR(ζ), if BR(ζ) < +∞ and BL(ζ) = −∞,
[BL(ζ) + BR(ζ) ] /2, otherwise.

(6)

(By convention, the supremum (or infimum) of a set unbounded to the right (or left) are defined as +∞ (or
−∞), respectively, and the supremum and infimum for an empty set are −∞ and +∞, respectively.) Clearly,
BL(ζ) ≤ BC(ζ) ≤ BR(ζ), and the values of BL(ζ) and BR(ζ) (if finite) can be either the same observed slope, or two
successive observed slopes. The confidence interval for a 100qth percentile slope is centered on the sample 100qth
percentile slope, defined as

ξ̂q = BC [ ζ(1− 2q) ] . (7)

The lower and upper confidence limits for a qth percentile slope are, respectively,

ξ̂(min)
q = BL

{
ζ(1− 2q)− zα ŜE[ζ∗(ξ̂q)]

}
, ξ̂(max)

q = BR

{
ζ(1− 2q) + zα ŜE[ζ∗(ξ̂q)]

}
. (8)

If tdist is specified, then censlope uses the t-distribution with ν = N − 1 degrees of freedom if there are N
unclustered observations, or ν = Nclust − 1 degrees of freedom if there are Nclust clusters, instead of the normal
distribution, and therefore tν,α replaces zα in (8). Note that the upper and lower confidence limits may occasionally
be infinite, in the case of extreme percentiles and/or very small sample numbers. censlope codes these infinite limits
as plus or minus the Stata creturn value c(maxdouble), which is the system maximim double precision value (see
on–line help for creturn).

Figure 1 illustrates these formulas in the case of the Y –variable trunk and the X–variable foreign in the auto
data. The median difference in trunk capacity ξ̂0.5, and its lower and upper 95% confidence limits, are shown as
reference lines on the horizontal axis. The estimated median difference in trunk space between non–US and US cars
is -3 cubic feet, with 95% confidence limits from -5 to -1 cubic feet. The reference lines on the vertical axis are the
optimum, minimum and maximum values of ζ∗(β) required for β to be in the confidence interval.

Note that censlope inherits all the options of somersd, so θ(X, Y − βX) in (1) can stand for any of the
generalized versions of Somers’ D and Kendall’s τa described in somersd.pdf. We can therefore estimate generalized
percentile slopes or differences, defined in terms of generalized Somers’ D or Kendall’s τa parameters. For instance,
we can use the wstrata() option to estimate median slopes and differences restricted to comparisons within strata
defined by a confounding variable, or we might use the option funtype(wcluster) to estimate within–cluster median
differences and slopes.
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Figure 1. ζ∗(β) plotted against the difference β in trunk space between non–US and US cars

2.1 Numerical evaluation of BL(ζ) and BR(ζ)

We can see, by (6), (7) and (8), that the key to calculating confidence intervals for percentile slopes is calculating
BL(ζ) and BR(ζ) for a given ζ. Traditionally, this has been done by calculating every possible pairwise slope
(Yi−Yj)/(Xi−Xj) for each pair of observations in the sample to make a dataset of all pairwise slopes, and by using
this dataset to find the median (and other percentile) slopes. This requires an amount of computational time, and
data storage space, proportional to N2, where N is the number of observations. For this reason, confidence intervals
for median slopes have traditionally only been calculated for small samples. as have confidence intervals for other
rank statistics, such as Somers’ D and Kendall’s τa, which are also commonly calculated by comparing every pair
of (X, Y )–pairs. See Sprent and Smeeton (2001) for some worked examples using traditional methods.

It is not necessary to compare each pair of (X, Y )–pairs. somersd uses the algorithm of Newson (2006a), which
calculates Somers’ D, Kendall’s τa and their jackknife variances in a time asymptotically proportional to N log N ,
using a search tree to avoid having to compare every pair of (X,Y )–pairs. We can therefore use somersd to calculate
ζ∗(β) for any β in a time proportional to N log N . censlope uses versions of some of the iterative numerical methods
of Chapter 9 of Press et al. (1992), modified for step functions, to evaluate BL(ζ) and BR(ζ), for a given ζ. This is
done by defining the object function ω(β) = ζ∗(β)− ζ and attempting to find a solution in β to the equation

0 = ω(β) = ζ∗(β) − ζ, (9)

using somersd to calculate ω(β). This requires a computational time of order NevalN log N , where Neval is the number
of evaluations of the object function in the iteration sequence. For very large datasets (N > 1000), this will typically
take less time than a quadratic algorithm that compares all pairs of (X,Y )–pairs. However, in small datasets, such
as the auto data, cendif typically takes much less time to calculate a Hodges–Lehmann median difference, using its
quadratic algorithm, than censlope takes using one of its iterative algorithms to do the same. This is not surprising.
The performance study of Newson (2006a) seems to imply that, if there are less than 100 observations, then the
execution time of somersd is dominated by “constant” terms not dependent on sample size, whether somersd is
using a quadratic algorithm or a search tree algorithm. Therefore, we would expect the computational time for an
iteration sequence, involving Neval calls to somersd, to have a component proportional to Neval, which will dominate
execution time if the sample size is small and the number of iterations is large.
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The algorithms used by censlope use versions of standard bracket convergence methods for finding roots,
modified for step functions. To solve an equation of the form (9), we would normally start with two β–values β0

and β1, whose corresponding respective ω–values ω0 and ω1 bracket zero, meaning that ω0 ω1 < 0 (because the
two ω–values have opposite signs). If ω( · ) is continuous, then, by the imtermediate–value theorem, there will be a
solution to (9) between β0 and β1, and this solution will be unique if ω( · ) is strictly monotonic. However, in this
case, ω( · ) is not continuous, but a nonincreasing step function similar to Figure 1. Therefore, instead of expecting
to find a unique solution to (9), we try to find a supremum (or infimum) of the set of β–values with positive (or
negative) values of the object function. In this case, the two ω–values are said to bracket zero if and only if

sign(ω1) 6= 0 and sign(ω1) 6= sign(ω0). (10)

In other words, ω1 is a strict bracket, which must not be zero, whereas ω0 is a partial bracket, which may either
be zero or have the opposite sign to ω1. During each iteration, we compute a new β–value βnew, between β0 and
β1, with a corresponding ω–value ωnew = ω(βnew). In the next iteration, the pair (βnew, ωnew) will replace (β1, ω1) if
sign(ωnew) = sign(ω1), and will replace (β0, ω0) otherwise. Iterations proceed until β0 and β1 have a relative difference
no more than the value of the tolerance() option. When this has happened, we can use either of the β–values to
estimate BL(ζ) or BR(ζ) (depending on whether we initialized β1 < β0 or β0 < β1).

The numerical methods specified by the technique() option differ in the method used to calculate βnew. The
technique bisect does this using the simple bisection formula βnew = (β0 +β1)/2. The technique regula uses simple
bisection if ω0 = 0, and uses the regula falsi (or false position) method otherwise. The technique ridders uses simple
bisection if ω0 = 0, and uses the method of Ridders (1979) otherwise. The simple bisection method is guaranteed to
converge slowly, whereas the modified regula falsi and Ridders methods will be faster if the object function ω( · ) is
nearly continuous, but may be a lot slower if ω( · ) is very discrete. The user may specify a combination of methods,
such as starting with the regula falsi or Ridders method for earlier iterations (when the object function is nearly
continuous over a long interval), and moving to the bisection method later (when the object function is highly
discrete over a short interval).

For each percentage 100q, censlope attempts to evaluate BL[ζ(1− 2q)] and BR[ζ(1− 2q)] in order to evaluate
the percentile estimate ξ̂q, and then (if this evaluation is successful) evaluates the two confidence limits. This
implies 4 sequences of iterations, to evaluate the “left estimate”, the “right estimate” and the two confidence limits,
respectively. Typically, using the default tolerance of 1e-6, and the “slow but sure” bisection method, this implies
4 sets of around 20 iterations. Together with the initialization of the brackets, this implies a large number (80–100)
of calls to somersd. However, that number is usually fewer than 100 evaluations per percentile, implying less work
than (say) bootstrapping Somers’ D, which would typically involve at least 1000 evaluations. On the other hand,
if the sample size is large, then this method would probably be unthinkable for practical statisticians without the
algorithm of Newson (2006a).

2.2 Comparisons with existing methods

Sen (1968) developed a confidence interval formula for ξ̂q in the special case where q = 0.5, θ(Y,X) = τ(Y,X)
and ζ(θ) = θ, using methods similar to the present ones. In this special case, (1) becomes simply τ(Y − βX,X) = 0.
The main difference from the present method was in the method used for calculating the distribution of ζ∗(β). Sen
assumed that the variables X and Y − βX were not only “Kendall-uncorrelated”, but also statistically independent.
For small sample sizes (N ≤ 10), the confidence interval was calculated using tables of the exact distribution of the
sample Kendall’s τa, based on that assumption. For larger sample sizes, the population standard error SE[ ζ∗(β) ]
was calculated from the marginal sample distribution of X, using the same assumption. (See Kendall and Gibbons
(1990) for tables of the exact distribution for small sample sizes, and also for a demonstration that the Central
Limit Theorem works very well at sample sizes as small as 8 for the sample Kendall’s τa under the null hypothesis
of independence.) The assumption of independence between the predictor variable X and the “residuals” Y − βX
implies that the conditional population distributions of Y , given each value of X, are different only in location, and
may not differ in the conditional variance, or indeed in any other conditional moment about the mean. The original
Sen method therefore does not use the assumption of Normality, but does use the assumption of homoskedasticity,
which typically causes more problems when it is wrong.

Lehmann (1963) derived a confidence interval for the Hodges–Lehmann median difference, which is the Theil–
Sen slope for binary X–variables, based on the same assumption of independence. This method was popularized by
Conover (1999), Campbell and Gardner (1988) and Altman et al. (2000), and is available in unofficial Stata, using
Duolao Wang’s npshift routine (Wang, 1999) or Patrick Royston’s cid routine, downloadable from SSC (Royston,
1998). The method is essentially a special case of the Sen (1968) method, and is presumably subject to the same
cautions.
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The method used by censlope and cendif, by contrast, can estimate percentile differences other than the median
difference. Even in the case of a median difference, the predictor variable X and the “residuals” Y − βX are only
assumed to be “Kendall-uncorrelated”, and not necessarily independent. The population standard error SE[ ζ∗(β) ]
is estimated using the sample standard error ŜE[ ζ∗(β) ], which is calculated using an infinitesimal jackknife method
described in somersd.pdf. This method is robust to heteroskedasticity, possibly at the price of being less robust to
extremely small sample sizes than the traditional methods. Therefore, the method of censlope can be compared to
the original Sen method as Huber confidence intervals can be compared to maximum likelihood or quasi–likelihood
confidence intervals, and the method of cendif can be compared to the Lehmann method as the unequal–variance
t–test can be compared to the equal–variance t–test. Lehmann’s method, like the equal-variance t-test, assumes that
you can use data from the larger of two samples to estimate the population variability of the smaller sample.

The issue of heteroskedasticity, as it affects the t–test, is discussed in Moser, Stevens and Watts (1989) and in
Moser and Stevens (1992), who explored the issue, using exact analytical formulas to compare the equal–variance
t–test with the Satterthwaite unequal–variance t–test. Their conclusion (as I understand it) appears to be that we
should view the equal–variance t–test as a special method for use only when we “know” that the sub–population
variances are equal, rather than to follow the more “traditional” practice of viewing the unequal–variance t–test as
a special method for use only when we “know” that the sub–population variances are unequal. I have carried out
some unpublished simulations, comparing cendif to the Lehmann method, and to the two t-tests. These simulations,
some of which are briefly described in cendif.pdf and in Newson (2002), seem to point to a similar recommendation
regarding the two types of rank–based methods for median differences. However, more work is probably required on
this issue.

3 Examples

3.1 Example 1. Weight per inch in the auto data

In the auto data, we can use censlope to estimate the median slope of weight (in US pounds) with respect to
length (in US inches) as follows:

. censlope weight length
Outcome variable: weight
Somers’ D with variable: length
Transformation: Untransformed
Valid observations: 74
Symmetric 95% CI
------------------------------------------------------------------------------

| Jackknife
length | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
weight | .8286359 .0275321 30.10 0.000 .7746739 .8825978

------------------------------------------------------------------------------
95% CI(s) for percentile slope(s)

Percent Pctl_Slope Minimum Maximum
50 32.745114 30.588225 35.106387

The untransformed Somers’ D of weight with respect to length is 0.83, with a confidence interval from 0.77 to
0.88, indicating that, in the population from which these cars were sampled, a longer car is 77% to 88% more likely
to be heavier than a shorter car than to be lighter than a shorter car. Each additional inch of length typically adds
30.59 to 35.11 pounds of weight.

If we use the z–transform for Somers’ D, then the results are as follows:

. censlope weight length, transf(z)
Outcome variable: weight
Somers’ D with variable: length
Transformation: Fisher’s z
Valid observations: 74
Symmetric 95% CI for transformed Somers’ D
------------------------------------------------------------------------------

| Jackknife
length | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
weight | 1.183767 .0878602 13.47 0.000 1.011564 1.35597

------------------------------------------------------------------------------
Asymmetric 95% CI for untransformed Somers’ D

Somers_D Minimum Maximum
weight .82863585 .76640832 .87545512
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95% CI(s) for percentile slope(s)
Percent Pctl_Slope Minimum Maximum

50 32.745093 30.588221 35.081996

This time, Somers’ D is 0.77 to 0.88, implying (again) that longer cars are 77% to 88% more likely to be heavier
than shorter cars than to be lighter than shorter cars. The typical increase in weight per additional inch of length
is 30.59 to 35.08 pounds per inch, which is very similar to the previous confidence interval.

Transformations such as Fisher’s z are more likely to be important in estimating percentile slopes other than
the median. We can ask for the 25th and 75th percentiles as well, using the centile() option:

. censlope weight length, transf(z) centile(25(25)75)
Outcome variable: weight
Somers’ D with variable: length
Transformation: Fisher’s z
Valid observations: 74
Symmetric 95% CI for transformed Somers’ D
------------------------------------------------------------------------------

| Jackknife
length | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
weight | 1.183767 .0878602 13.47 0.000 1.011564 1.35597

------------------------------------------------------------------------------
Asymmetric 95% CI for untransformed Somers’ D

Somers_D Minimum Maximum
weight .82863585 .76640832 .87545512

95% CI(s) for percentile slope(s)
Percent Pctl_Slope Minimum Maximum

25 24.102562 19.999994 27.058827
50 32.745093 30.588221 35.081996
75 41.818174 38.63634 46.136372

We see that the 25th percentile slope is 20.00 to 27.06 pounds per inch, and that the 75th percentile slope is
38.64 to 46.14 pounds per inch.

3.2 Example 2. Weights of non–US and US cars

If we compare the weights of non–US cars with the weights of US cars using censlope to calculate a Hodges–
Lehmann median difference, then the results are as follows:

. censlope weight foreign, transf(z)
Outcome variable: weight
Somers’ D with variable: foreign
Transformation: Fisher’s z
Valid observations: 74
Symmetric 95% CI for transformed Somers’ D
------------------------------------------------------------------------------

| Jackknife
foreign | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
weight | -.9749561 .1908547 -5.11 0.000 -1.349024 -.6008878

------------------------------------------------------------------------------
Asymmetric 95% CI for untransformed Somers’ D

Somers_D Minimum Maximum
weight -.75087413 -.87382282 -.53768098

95% CI(s) for percentile slope(s)
Percent Pctl_Slope Minimum Maximum

50 -1095.0002 -1330.0003 -749.99945

We see (by the confidence interval for Somers’ D) that non–US cars are 54% to 87% less likely to be heavier
than US cars than to be lighter than US cars. The sample median difference is -1095 pounds, and we can be 95%
confident that the population median difference is between -1330 and -750 pounds. Again, we can estimate other
percentile differences than the median:

. censlope weight foreign, transf(z) centile(0(25)100)
Outcome variable: weight
Somers’ D with variable: foreign
Transformation: Fisher’s z
Valid observations: 74
Symmetric 95% CI for transformed Somers’ D
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------------------------------------------------------------------------------
| Jackknife

foreign | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

weight | -.9749561 .1908547 -5.11 0.000 -1.349024 -.6008878
------------------------------------------------------------------------------
Asymmetric 95% CI for untransformed Somers’ D

Somers_D Minimum Maximum
weight -.75087413 -.87382282 -.53768098

95% CI(s) for percentile slope(s)
Percent Pctl_Slope Minimum Maximum

0 -3080 -8.99e+307 -3080
25 -1555.0001 -1790.0001 -1319.9997
50 -1095.0002 -1330.0003 -749.99945
75 -485.00001 -810.00056 -99.999931

100 1619.9993 1619.9999 8.99e+307

The 25th percentile difference is between -1790 pounds and -1320 pounds. The 75th percentile difference is -810
to -100 pounds, showing that the weights of US and non–US cars do not overlap a great deal. The 0th percentile
difference of -3080 pounds is the most negative difference (between the lightest non–US car and the heaviest US car),
and the 100th percentile difference of 1620 pounds is the most positive difference (between the heaviest non–US car
and the lightest US car). The lower confidence limit for te 0th percentile difference is c(mindouble), denoting “minus
infinity”, whereas the higher confidence limit for the 100th percentile is c(maxdouble), denoting “plus infinity” (see
help for creturn). In fact, the 95% confidence limits for the 0th and 100th percentiles are conservative, as we can
be 100% confident that the population minimum difference is no higher than the corresponding sample minimum
difference, and we can be 100% confident that the population maximum difference is no lower than the corresponding
sample maximum difference.

Alternatively, we can estimate Hodges–Lehmann percentile ratios instead of Hodges–Lehmann percentile differ-
ences, by logging the weights and using the eform option:

. gene logweight=log(weight)

. censlope logweight foreign, transf(z) centile(0(25)100) eform
Outcome variable: logweight
Somers’ D with variable: foreign
Transformation: Fisher’s z
Valid observations: 74
Symmetric 95% CI for transformed Somers’ D
------------------------------------------------------------------------------

| Jackknife
foreign | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
logweight | -.9749561 .1908547 -5.11 0.000 -1.349024 -.6008878

------------------------------------------------------------------------------
Asymmetric 95% CI for untransformed Somers’ D

Somers_D Minimum Maximum
logweight -.75087413 -.87382282 -.53768098

95% CI(s) for percentile ratio(s)
Percent Pctl_Ratio Minimum Maximum

0 .36363652 0 .36363652
25 .57309349 .53268748 .62190848
50 .67538394 .61424299 .76325174
75 .8378454 .73890344 .96698107

100 1.8999989 1.8999984 8.99e+307

We see that a randomly–chosen non–US car typically weighs 61% to 76% as much as a randomly–chosen US
car, and the 75th percentile ratio of 74% to 97% indicates that there is little overlap between the two groups of cars.
The confidence interval for Somers’ D shows (again) that a randomly–chosen non–US car is 87% to 54% more likely
to be lighter than a randomly–chosen US car than to be heavier than a randomly–chosen US car.

3.3 Example 3. Unadjusted and weight–adjusted fuel efficiencies the auto data

censlope does not only estimate unadjusted effects. It can also estimate confounder–adjusted effects, which we
might not expect to be able to do using rank methods.

In the auto data, we might compare fuel efficiencies (in miles per gallon) between non–US and US cars. We
can make this comparison either crudely or stratifying by quintile of weight. We use xtile to define the quintiles of
weight, and censlope to measure median differences in fuel efficiency, as follows:
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. xtile weightgp=weight, nquantiles(5)

. tab weightgp foreign
5 |

quantiles | Car type
of weight | Domestic Foreign | Total

-----------+----------------------+----------
1 | 4 11 | 15
2 | 8 7 | 15
3 | 12 3 | 15
4 | 14 1 | 15
5 | 14 0 | 14

-----------+----------------------+----------
Total | 52 22 | 74

. censlope mpg foreign, transf(z)
Outcome variable: mpg
Somers’ D with variable: foreign
Transformation: Fisher’s z
Valid observations: 74
Symmetric 95% CI for transformed Somers’ D
------------------------------------------------------------------------------

| Jackknife
foreign | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
mpg | .4937249 .1708551 2.89 0.004 .1588551 .8285947

------------------------------------------------------------------------------
Asymmetric 95% CI for untransformed Somers’ D

Somers_D Minimum Maximum
mpg .45716783 .15753219 .67972072

95% CI(s) for percentile slope(s)
Percent Pctl_Slope Minimum Maximum

50 4.999998 1.9999991 7.0000031
. censlope mpg foreign, transf(z) wstrata(weightgp)
Outcome variable: mpg
Somers’ D with variable: foreign
Transformation: Fisher’s z
Within strata defined by: weightgp
Valid observations: 74
Symmetric 95% CI for transformed Somers’ D
------------------------------------------------------------------------------

| Jackknife
foreign | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
mpg | -.3768859 .2170165 -1.74 0.082 -.8022305 .0484587

------------------------------------------------------------------------------
Asymmetric 95% CI for untransformed Somers’ D

Somers_D Minimum Maximum
mpg -.36 -.66528187 .04842076

95% CI(s) for percentile slope(s)
Percent Pctl_Slope Minimum Maximum

50 -2.0000003 -4.0000008 7.654e-07

We divide the cars into weight quintiles using xtile to create a new variable weightgp denoting weight quintile,
and note that all quintiles except the highest contain both US and non–US cars. When we estimate the unadjusted
median difference in fuel efficiency between non–US and US cars, we find that, if we choose a car of each type at
random, then the non–US car typically travels 5 more miles per gallon than the US car, with confidence limits from
2 more miles per gallon to 7 more miles per gallon. However, if we use the option wstrata(weightgp) to restrict
the analysis to comparisons between non–US and US cars in the same weight quintile, then we find that non–US
cars typically travel 0 to 4 fewer miles per gallon than US cars in the same weight quintile.

In this analysis, there is only one confounding variable, namely weight. More often, in the real world, there are
multiple confounders. However, we can use the method of propensity scores to “collapse” multiple confounders to
a single confounder, known as the propensity score, and then use this propensity score to create propensity groups
for use in a stratified analysis. (See Rosenbaum and Rubin (1983) and Imai and van Dyk (2004) for more about
propensity scores.)

3.3 Example 4. Flow rates in a mountain stream over time

The following example is from Chapter 8 of Sprent and Smeeton (2001). The data points are 7 measurements
of rate of flow (expressed in cubic metres per second) in a mountain stream, made at various times (expressed in
hours from the start of the thaw). The data are plotted in Figure 2.



12 Post-publication update RBN-3

We can use censlope to calculate a confidence interval for the Theil–Sen median slope of flow with respect to
time, expressed in cubic metres per second per hour:

. censlope flow hours, tdist transf(z) ystar(resid)
Outcome variable: flow
Somers’ D with variable: hours
Transformation: Fisher’s z
Valid observations: 7
Degrees of freedom: 6
Symmetric 95% CI for transformed Somers’ D
------------------------------------------------------------------------------

| Jackknife
hours | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
flow | 17.61636 . . . . .

------------------------------------------------------------------------------
Asymmetric 95% CI for untransformed Somers’ D

Somers_D Minimum Maximum
flow 1 1 1

95% CI(s) for percentile slope(s)
Percent Pctl_Slope Minimum Maximum

50 .56666653 .44999988 2.3666683

We note that the Somers’ D of flow rate with respect to time is 1 (with a zero standard error), indicating
that later measurements always recorded higher flow rates than earlier measurements. The sample Theil–Sen median
difference was 0.567 netres per second per hour, with 95% confidence limits for the population median difference from
0.450 to 2.367 metres per second per hour. These are the same as the confidence limits calculated by Sprent and
Smeeton, using the original exact formula from Sen (1968). There is therefore no discrepancy, in this case, between
the censlope method (which is more robust to heteroskedasticity) and the original Sen method (which is probably
more robust to very small sample numbers).
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Figure 2. Flow rates of a mountain stream over time (from Sprent and Smeeton, 2001)

We might want to use the Theil–Sen slope to draw a line through the data points, as in Figure 2. To do this, we
need an intercept as well as a slope. A candidate for such an intercept, used by Sprent and Smeeton, is the median
of the “residuals” Yj − βXj . We calculate this intercept, and use it to draw a line, as follows:
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. egen intercept = median(resid)

. gene flowhat = flow - resid + intercept

. lab var flowhat "Fitted flow"

. twoway scatter flow hours || line flowhat hours, xlab(0(1)6) ylab(0(1)12)

First, we use egen to calculate the median of the variable resid, generated by the ystargenerate() option,
which stores the “residuals”. This median is stored in a new variable intercept. Then, we generate the fitted values
of the flow rate in a new variable flowhat. These fitted values are plotted as a line against the time variable hours,
and the observed flow values are superimposed to create the graph of Figure 2.

Note that the line drawn using the Theil–Sen slope passes close to the first 6 data points, and is not influenced
greatly by the “outlier” at 6 hours after the start of the thaw. By contrast, the conventional least–squares regression
slope has intercept 1.507 cubic metres per second and slope 1.107 metres per second per hour, because of the influence
of the “outlier”. This lack of sensitivity to tiny minorities of “outliers” is often seen as an advantage of the Theil–Sen
slope.
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5 Historical note

This document is part of a post-publication update, arising originally from two articles, which appeared in the
Stata Technical Bulletin (STB) as Newson (2000a) and Newson (2000b). These introduced the modules somersd
and cendif, respectively, both of which are parts of the somersd package. Post-publication updates of those STB
articles are now distributed with the somersd package as somersd.pdf and cendif.pdf, which are manuals for the
somersd and cendif modules. This document censlope.pdf, written in the same format as the other two manuals,
was added later, after censlope was written in May 2006. The definitive reference to be cited for the methods of
censlope is Newson (2006c).
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