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1 Introduction

We assume that there are two potentially infinite sampling sequences of units, sampled in a mutually inde-
pendent way from Subpopulations 0 and 1, respectively, of an overall population. We define outcome random
variables {Y0i} and {Y1i} for the ith unit sampled from Subpopulations 0 and 1, respectively. We will as-
sume that Subpopulation i has a continuous common probability distribution for the Yij , with cumulative
distribution function Fi(·) and probability density function fi(·). For h ∈ {0, 1} and i a positive integer,
define Xhi = h, so that the ordinal X–variable indicates membership of the Subpopuation 1, rather than
the Subpopulation 0. From these sequences, we may take finite samples (Subsample 0 and Subsample 1),
containing units corresponding to the first N0 and N1 positive integers, respectively, and calculate sample
statistics to estimate population parameters, to compare the two subpopulations.

The population parameters that we aim to estimate here are Somers’ D, Harrell’s c, the Hodges–Lehmann
percentile pairwise differences, and the differences between the subpopulation percentiles. All of these param-
eters can be estimated, with sample point estimates and confidence limits, using rank (or “nonparametric”)
methods, and are discussed in Newson (2002)[7], or in Bonett and Price (2002)[1]. The subsequent sections
will define each of these parameters, and their sample estimates, and discuss the asymptotic distributions of
these sample estimates. All of these estimates are governed by versions of the the Central Limit Theorem,
and are asymptotically Normally distributed as the smaller of the two subsample sizes becomes large, with
asymptotic variances depending on the Fi(·) and the fi(·). Note that we will not necessarily assume that
the two subpopulations are equally variable, although this was often done in the past, to avoid needing
computers. (See, for example, Hodges and Lehmann (1963)[5] and Lehmann (1963)[6].)

2 Somers’ D and Harrell’s c

The parameter Somers’ D was introduced by Somers (1962)[12]. In this two–sample case, it is defined as

D(Y |X) = E[ sign(Y1k − Y0j) sign(X1k −X0j)] = Pr(Y0j < Y1k)− Pr(Y0j > Y1k), (1)

assumed to have the same value for all positive integers j and k. An equivalent parameter is Harrell’s c
(Harrell et al., 1982)[4], defined in this two–sample case as

c(Y |X) = [D(Y |X) + 1 ]/2 = Pr(Y0j < Y1k) +
1

2
Pr(Y0j = Y1k), (2)

equal simply to Pr(Y0j < Y1k) if the Y –variables are sampled from continuous distributions, which of course
exist only in theoretical statistics. Both of these population parameters are estimated using sample statistics.
In the case of Somers’ D, the point estimate, for sample numbers N0 and N1, is

D̂N0,N1
(Y |X) =

1

N0N1

N0∑
j=1

N1∑
k=1

sign(Y1k − Y0j) =
1

N0N1

N0∑
j=1

N1∑
k=1

[ I(Y0j < Y1k)− I(Y1k < Y0j) ], (3)

where I(Q), for a proposition Q, is the indicator function, equal to 1 if Q is true and to 0 if Q is false. In
the case of Harrell’s c, the point estimate is

ĉN0,N1
(Y |X) = [ D̂N0,N1

(Y |X) + 1 ]/2 =
1

N0N1

N0∑
j=1

N1∑
k=1

[ I(Y0j < Y1k) +
1

2
I(Y1k = Y0j) ], (4)
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equal to (N0N1)−1
∑N0

j=1

∑N1

k=1 I(Y0j < Y1k) if the Y –variables are continuous. Note that both of these
statistics are two–sample generalized U–statistics in the terminology of Chapter 5 of Serfling (1980)[11]. In
that terminology, the respective kernels of Somers’ D and Harrell’s c are

hD(y0, y1) = sign(y1 − y0), hc(y0, y1) = I(y0 < y1) +
1

2
I(y0 = y1), (5)

where the second term of the kernel for Harrell’s c is zero for continuous variables.
From this point, we will work with Harrell’s c, assume that the Yij are continuous variables, and define

the kernels and U–statistics using the distribution of the underlying uniformly distributed variables

Uij = Fi(Yij), (6)

which are mutually independent and have an identical uniform distribution with minimum 0 and maximum
1. The kernel for Harrell’s c in terms of the Uij is then defined as

g(u0, u1) = hc
[
F−1

0 (u0), F−1
1 (u1)

]
= I

[
F−1

0 (u0) < F−1
1 (u1)

]
. (7)

To derive the asymptotic distribution of ĉN0,N1
(Y |X), we use the methods of Chapter 5 of Serfling (1980)[11].

We start by defining the conditional expectations of this kernel, given values in the interval (0, 1) for the Uij

in the two subsamples, as

ḡ0(u) = E [ g(u, U1i) ] = 1− F1

[
F−1

0 (u)
]
,

ḡ1(u) = E [ g(U0i, u) ] = F0

[
F−1

1 (u)
]
.

(8)

Note that the two functions ḡ0(·) and ḡ1(·) are inversely related, in that, for u ∈ (0, 1),

ḡ−1
1 (u) = 1− ḡ0(u), ḡ−1

0 (u) = ḡ1(1− u). (9)

Note, also, that, in the terminology of diagnostic tests, the ḡi(·) can be defined in terms of the sensitivity
and specificity of a diagnostic test for membership of Subpopulation 1 instead of Subpopulation 0, defined
by assuming that units with Y –values above a critical value are members of Subpopulation 1, and that units
with Y –values below that critical value are members of Subpopulation 0. (If the Yij are continuous, then
the probability of a Y –value equal to the critical value is zero.) If we define sensitivity and specificity for
a critical value ycrit respectively as

sens(ycrit) = 1− F1(ycrit), spec(ycrit) = F0(ycrit), (10)

then, for u ∈ (0, 1), we have the equalities

ḡ0(u) = sens
[
F−1

0 (u)
]
, ḡ1(u) = spec

[
F−1

1 (u)
]
. (11)

This implies that the mean, variance and other moments of sens(Y0j) are equal to the corresponding moments
of ḡ0(U0j), and that the mean, variance and other moments of spec(Y1j) are equal to the corresponding
moments of ḡ1(U1j). The ḡi(Uij) are conditional expectations of the kernels g(U0j , U1k), and therefore have
the common expectation

E [ḡ0(U0j)] = c(Y |X) = E [ḡ1(U1j)] . (12)

The sampling distribution of ĉN0,N1
(Y |X) converges, as min(N1, N2)→∞, to a Normal form, with a variance

that converges in ratio to the expression

N−1
0 V [ ḡ0(U0j) ] + N−1

1 V [ ḡ1(U1j) ] , (13)

where V [·] denotes variance.
The expression (13) can be used in approximate power calculations for Harrell’s c, and therefore for

Somers’ D, whose variance is derived simply by quadrupling the variance of Harrell’s c. To do this, we must
specify a model for the Fi(·), to be assumed in the power calculations, and then calculate the V [ḡi(Uij)]
using the expressions

V [ ḡi(Uij) ] =

∫ 1

0

[ ḡi(u)− c(Y |X) ]
2
du, (14)

which can be calculated numerically, if we can specify a value for c(Y |X) and functional forms for the Fi(·)
to be used in the formulas (8). The numerical integration results for (14) will probably be fairly stable, given
that we are integrating a function whose magnitude is bounded above by 1 over the unit interval. Typically,
when carrying out power calculations, we assume a “toy model”, such as a homoskedastic Normal or shifted
exponential model, and hope that this model will produce calculations of power and sample size that are
not too greatly in error, and use rank methods as an insurance policy, in case our “toy model” is not exactly
true.
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Figure 1: Sensitivity and specificity under 25 combinations of mean difference and standard deviation ratio.
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2.1 Example: Harrell’s c between Normal subpopulations

One possible “toy model” is the Normal model, which assumes that the Fi(·) belong to Normal subpopulation
distributions, with means µ0 and µ1, and standard deviations (SDs) σ0 and σ1, respectively. Under these
assumptions, Harrell’s c is given by

c(Y |X) = Φ

(
µ1 − µ0√
σ2

0 + σ2
1

)
= Φ

[
(µ1 − µ0)/σ0√

1 + (σ1/σ0)2

]
, (15)

where Φ(·) denotes the standard Normal cumulative distribution function. Note that Harrell’s c depends
only on the difference between the means (expressed in units of the SD of Subpopulation 0) and on the ratio
of the Subpopulation 1 SD to the Subpopulation 0 SD.

Figure 1 illustrates the distributions of ḡ0(U0j) and ḡ1(U1j) under 25 scenarios, corresponding to all
possible combinations of 5 mean differences (-2, -1, 0, 2 and 1 Subpopulation 0 SDs) and 5 SD ratios
σ1/σ0 (1/4, 1/2, 1, 2 and 4). The subgraphs correspond to these scenarios, and are arrayed with rows
corresponding to the SD ratios and columns corresponding to the mean differences. For each subgraph,
the value of Harrell’s c is also given in the subtitle. In each subgraph, the points on the line correspond
to candidate critical Y –values for use in a diagnostic test, the vertical axis gives the sensitivity, and the
horizontal axis gives the specificity. Under each scenario, the population distribution of ḡ0(U0j) can be
simulated by sampling points at random from the horizontal specificity axis and recording the corresponding
sensitivity, and the population distribution of ḡ1(U1j) can be simulated by sampling points at random from
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the vertical sensitivity axis and recording the corresponding specificity. The area under the sensitivity–
specificity curve for each scenario is equal to the Harrell’s c for that scenario, and is discussed as a measure
of diagnostic power in Hanley and McNeil (1982)[3]. Note that the area under the sensitivity–specificity
curve increases progressively between the subgraphs within each row of the graph, as the mean difference
(µ1 − µ0)/σ0 increases.

The slope of the sensitivity–specificity curve is negative, and is equal, at each point, to minus the likeli-
hood ratio f1(ycrit)/f0(ycrit) of the corresponding candidate critical Y –value ycrit. Note that the subgraphs
in the third row, corresponding to a SD ratio of 1, all have sensitivity–specificity curves that are either convex
or concave, corresponding to a monotonic likelihood ratio, whereas the subgraphs in the other rows, corre-
sponding to other SD ratios, all have sigmoid sensitivity–specificity curves, corresponding to non–monotonic
likelihood ratios. Note, also, that, in each column of the graph (corresponding to a mean difference), ḡ0(U0j)
(corresponding to the vertical axis) becomes progressively less variable as the SD ratio becomes higher,
whereas ḡ1(U1j) (corresponding to the horizontal axis) becomes progressively more variable as the SD ratio
becomes higher. The central subgraph in the third row and the third column corresponds to the case where
the subpopulations have equal means and standard deviations, implying that both ḡ0(U0j) and ḡ1(U1j) are
distributed uniformly over the unit interval. This scenario is a case of the null hypothesis tested by the
two–sample Wilcoxon test, under which the asymptotic variance expression (13) for Harrell’s c is equal to
(N−1

0 +N−1
1 )/12, as proved in Chapter 5 of Serfling (1980)[11].

2.2 Power calculations for Harrell’s c using the Normal model

A statistician may be asked to do power calculations for estimating Harrell’s c. For example, a medical
colleague might ask a statistician to compute a power curve for the power to detect a high level of discrim-
inating power for a newly–developed diagnostic test score. The null hypothesis may be either a hypothesis
of no predictive power at all (corresponding to a Harrell’s c of 0.5 or a Somers’ D of 0), or a hypothesis of
an inferior non–zero level of predictive power (corresponding to a Harrell’s c of 0.6 or a Somers’ D of 0.2).
A statistician’s natural response may be to use the Normal model to do the power calculations. And the
statistician may be under pressure to produce these calculations in a hurry, necessitating a quick and dirty
solution which is not far wrong.

The 5 quantities featuring in power calculations (each of which can be calculated from the other 4) are the
power, the significance level (or alpha), the detectable difference (or delta), the sample size, and the standard
deviation of the influence function. The latter quantity is defined in Newson (2004)[8] as the product of the
standard error of the sample parameter estimate and the square root of the sample size, and is equal to
the common standard deviation, in the power calculations for an equal–variance t–test. For the two–sample
Harrell’s c, the asymptotic value of this may be defined, using (13), as

σinf [ĉ(Y |X)] =

√
p−1

0 V [ ḡ0(U0j) ] + p−1
1 V [ ḡ1(U1j) ], (16)

where ĉ(Y |X) iss the sample estimate of Harrell’s c, p0 = N0/(N0 + N1) and p1 = N1/(N0 + N1) are the
proportions of individuals in Subsample 0 and Subsample 1, respectively. This may be rewritten in terms of
the sample ratio (or odds) ω1 = p1/p0 = p1/(1− p1) as

σinf [ĉ(Y |X)] =

√
(1 + ω1)V [ ḡ0(U0j) ] +

1 + ω1

ω1
V [ ḡ1(U1j) ] . (17)

Given 2 Normal subpopulations with means µ0 and µ1 and standard deviations σ0 and σ1, this quantity can
be calculated by computing V [ḡ0(U0j)] and V [ḡ1(U1j)] by numerical solution of (14), using the expression
for c(Y |X) in (15). As pointed out in Chapter 5 of Serfling (1980)[11], the numerical integration is not really
necessary if the means and variances are equal, because then we have V [ḡ0(U0j)] = V [ḡ1(U1j)] = 1/12.
However, in the more general case, the means, the variances or both may be unequal. We must therefore
either do some numerical integration to compute (14), or avoid this programming work by using a variance–
stabilizing transformation. A good candidate variance–stabilizing transformation for Harrell’s c is probably
its quarter–logit

0.25 logit [c(Y |X)] , (18)

which is equivalent to transforming Somers’ D(Y |X) using the hyperbolic arctangent or Fisher’s z trans-
formation, as recommended in Edwardes (1995)[2]. The derivative of the quarter–logit with respect to
Harrell’s c is

d

dc(Y |X)
0.25 logit [c(Y |X)] = 0.25

(
1

c(Y |X)
+

1

1− c(Y |X)

)
, (19)
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Figure 2: Ratios between computed and null SDs of influence functions.
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which is 1 under the null hypothesis c(Y |X) = 0.5. The asymptotic standard deviation of the influence
function for the quarter–logit is therefore

σinf {0.25 logit [ĉ(Y |X)]} = 0.25

(
1

c(Y |X)
+

1

1− c(Y |X)

)√
(1 + ω1)V [ḡ0(U0j)] +

1 + ω1

ω1
V [ḡ1(U1j)].

(20)
If a statistician is working under pressure, then the statistician might be tempted to save programming
time by assuming the standard deviations of the influence functions are equal to their values under the null
hypothesis that the means and variances are both equal. The null value of the standard deviation of the
influence function, under that hypothesis, is

σinf {0.25 logit [ĉ(Y |X)]} = σinf [ĉ(Y |X)] =

√
1 + ω1

12
+

1 + ω1

12ω1
. (21)

This simplifying approximation is equivalent to assuming that there exists an unspecified monotonic transfor-
mation, which transforms the distribution of our test score to a variable Y , which is Normally distributed with
equal variances in the two subpopulations to be discriminated, and that the variance–stabilizing quarter–
logit transformation of Harrell’s c stabilizes the variance of the sample Harrell’s c perfectly. If we can make
this incredible–sounding assumption, then we need only worry about the subsample–size ratio ω1.

How much damage might be done by using this incredible assumption? Figure 2 is a graph matrix,
showing the impact of this assumption under a range of scenarios. The rows of the graph matrix correspond
to 7 standard–deviation ratios σ1/σ0 (1/4, 1/2, 2/3, 1, 3/2, 2 and 4) between Subpopulations 1 and 0. The
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columns of the graph matrix correspond to 7 possible mean differences (µ1 − µ0)/σ0 (-2, -1, -1/2, 0, 1/2, 1
and 2) between Subpopulations 1 and 0, expressed in units of the standard deviation of Subpopulation 0.
Each of the 49 combinations of the 7 SD ratios and the 7 mean differences is specified in its subgraph title,
together with the value of Harrell’s c for that combination of SD ratio and mean difference, as specified by
(15). The horizontal axis of each graph represents the sample–size ratio between Subsample 1 (a smaller
subsample from Subpopulation 1) and Subsample 0 (a larger subsample from Subpopulation 0). And the
vertical axis of each graph represents the ratio between the asymptotic SD of the influence function for the
quarter–logit of Harrell’s c, calculated using (20), and the assumed asymptotic SD of the same influence
function, calculated as the null SD of the influence function, using the over–simplifying assumption of (21).
This ratio will be 1 if the over–simplifying assumption of (21) is correct, and close to 1 if it is not far from
the truth. The ratio of 1 is indicated by a horizontal dashed reference line on the vertical axis.

We see that, in the middle row of the graph matrix (corresponding to an SD ratio of 1 between the
2 subpopulations), the ratio between the calculated and null SDs of the influence function is close to 1 if
the mean difference is between -1 and 1 SDs. And, in the middle 3 rows of the graph (corresponding to
an SD ratio between 2/3 and 3/2), the ratio between the calculated and null SDs of the influence function
is not radically different from 1. Outside the range of between–subpopulation SD ratios from 2/3 to 3/2,
and outside the range of between–population mean differences between -1 and 1 Subpopulation 0 SDs, the
over–simplifying null–SD assumption is tested to destruction, with calculated and null SDs of the influence
function frequently separated by ratios far from 1. The approximation of (20) by (21) has therefore been
tested to destruction. However, we see that, if the subpopulation SDs are not radically different, and if the
Harrell’s c is not outside the range from 0.3 to 0.7, then the simplifying assumption of (21) should produce
power estimates that are less approximate than we had any right to expect. So, if we are planning to measure
the discrimination power of a novel biomarker or test score using Harrell’s c, then the incredible–looking
formula (21) will produce power calculations not far from the truth, at least if there exists a transformation
that transforms the biomarker or test score to a distribution that is Normal, with similar variances, in each
of the 2 subpopulations between which we want to discriminate. And, if no such transformation exists, then
we might expect our biomarker or test score to have problems with a non–monotonic likelihood ratio.

3 Hodges–Lehmann percentile differences

The pairwise differences between the outcomes in Subsamples 1 and 0 are defined as

∆jk = Y1j − Y0k, (22)

for positive integers j and k, and are identically distributed, although not statistically independent. Their
common continuous density function, and distribution function, are given by

f∆(b) =
∫∞
−∞ f1(z)f0(z − b)dz,

F∆(b) =
∫ b

−∞ f∆(b′)db′.
(23)

Note that, for each b, we have

F∆(b) = Pr(Y1j − Y0k ≤ b) = Pr(Y1j − bX1j ≤ Y0k − bX0k) = 1− c(Y − bX|X), (24)

where c(Y − bX|X) is a Harrell’s c parameter, defined analogously to c(Y |X) in (2).
For q ∈ (0, 1), a 100qth Hodges–Lehmann percentile pairwise difference βq between Subpopulations 1 and

0 is defined as a solution in b to the equation

0 = F∆(b)− q = 1− c(Y − bX|X)− q, (25)

which is unique if F∆(·) is assumed to be strictly monotonically increasing, as we will do from this point. In
the terminology of Chapter 5 Serfling (1980)[11], the parameter 1− c(Y − bX|X)− q is a Hoeffding regular
functional for each b and q, and can be estimated, in a pair of samples of N0 and N1, by the corresponding
U–statistic 1 − ĉN0,N1

(Y − bX|X) − q. This estimate can be substituted into (25) to derive a consistent

sample estimate β̂q,N0,N1
, which is a hybrid between the U–statistics and M–estimates of Chapters 5 and

7, respectively, of Serfling (1980)[11]. The estimate for q = 0.5 is known as the sample Hodges–Lehmann
median difference, and was introduced by Hodges and Lehmann (1963)[5] and Lehmann(1963)[6]. More
general cases are discussed in Newson (2006)[9].

The asymptotic distribution of β̂q,N0,N1
, as min(N0, N1) → ∞, is derived as follows, by analogy to the

case for M–estimates discussed in Chapter 7 of Serfling (1980). We first differentiate the expression (25)
with respect to b to obtain the derivative

d

db
[ 1− c(Y − bX|X)− q ] =

d

db
[F∆(b)− q ] = f∆(b). (26)
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The asymptotic form of the distribution of β̂q,N0,N1 is Normal, with mean βq and a variance that converges
in ratio to

[ f∆(βq) ]
−2

V [ 1− ĉN0,N1
(Y − βqX|X)− q ] = [ f∆(βq) ]

−2
V [ ĉN0,N1

(Y − βqX|X) ] . (27)

To derive the variance V [ĉN0,N1(Y − βqX|X)], we proceed as for Equations (6) to (14), except that we use
the distributions of the Yij−βqXij instead of the distributions of the Yij . (In other words, we will work with
the common distribution of the Y0j in Subsample 0, and work with the common distribution of the Y1j − βq
in Subsample 1.) We will denote by Fq(·) the cumulative distribution function of the Y1j − βq, defined as

Fq(z) = Pr(Y1j − βq ≤ z) = F1(z + βq). (28)

The underlying uniform variables are the same underlying uniform variables Uij as in the previous subsection,
defined in (6), because, by (28), Fq(Y1j−βq) = F1(Y1j) = U1j for all j. However, the kernel of c(Y −βqX|X)
in the Uij is different from the kernel g(·, ·) of c(Y |X) in the Uij . Instead of (7), we define the kernel

gq(u0, u1) = hc
[
F−1

0 (u0), F−1
q (u1)

]
= I

[
F−1

0 (u0) < F−1
1 (u1)− βq

]
. (29)

We define the conditional expectations of this kernel, given values in the interval (0, 1) for the Uij in the two
subsamples, as

ḡq,0(u) = E [ gq(u, U1j) ] = 1− F1

[
F−1

0 (u) + βq
]
,

ḡq,1(u) = E [ gq(U0j , u) ] = F0

[
F−1

1 (u)− βq
]
.

(30)

(Again, we can interpret gq,0(u) as a sensitivity, and interpret gq,1(u) as a specificity, in a diagnostic test,
but this time the diagnostic test has been “handicapped” by subtracting βq from all test results from
Subpopulation 1.) Once again, the gq,i(Uij) have a common expectation

E [ḡq,0(U0j)] = c(Y − βqX|X) = 1− q = E [ḡq,1(U1j)] . (31)

The distribution of ĉN0,N1
(Y − βqX|X) tends to a Normal form, with a variance converging in ratio to

N−1
0 V [ ḡq,0(U0j) ] + N−1

1 V [ ḡq,1(U1j) ] . (32)

This, together with (27), implies that the distribution of β̂q,N0,N1
converges to a Normal form, with a variance

converging in ratio to

[ f∆(βq) ]
−2 {

N−1
0 V [ ḡq,0(U0j) ] + N−1

1 V [ ḡq,1(U1j) ]
}
. (33)

Again, the variance formula (33) allows approximate power calculations to be carried out, if we have
formulas for the Fi(·) and for their inverses, and also a formula for f∆(βq). Here, the integration formula to
calculate the variances of the ḡq,i(Uij) is

V [ ḡq,i(Uij) ] =

∫ 1

0

[ ḡq,i(u)− (1− q) ]
2
du. (34)

Again, we usually assume a model for these calculations.

3.1 Example: median differences between Normal subpopulations

Usually, we want to estimate the median difference, or β0.5, rather than other percentile differences.. Once
again, the Normal distribution is a good model for tutorial purposes. If Subpopulations 0 and 1 have Normal
distributions for the Yij , with means µ0 and µ1 and SDs σ0 and σ1, respectively, then the Hodges–Lehmann
median pairwise difference between Subpopulation 1 and Subpopulation 0 will be β0.5 = µ1−µ0. Therefore,
c(Y − β0.5X|X) will be 0.5, because this parameter is a Harrell’s c comparing the Y1k − β0.5 (with a mean
of µ0 and a SD of σ1) with the Y0j (with a mean of µ0 and a SD of σ0). However, the exact distributions
of the ḡ0.5,i(Uij), which determine the asymptotic variance of the median difference, will depend on the SD
ratio σ1/σ0.

Figure 3 shows the sensitivity–specificity curves under 9 different SD ratios σ1/σ0, namely 1/4, 1/3,
1/2, 2/3, 1, 3/2, 2, 3 and 4. Again, in each subplot, we can simulate the distribution of the ḡ0.5,0(U0j)
by sampling at random from the horizontal specificity axis and recording the corresponding sensitivity, and
we can simulate the distribution of the ḡ0.5,1(U1j) by sampling at random from the vertical sensitivity axis
and recording the corresponding specificity. Note that, as the SD ratio increases, the sensitivities ḡ0.5,0(U0j)
become progressively less variable, and the specificities ḡ0.5,1(U1j) become progressively more variable. The
central plot (in the second row and the second column) gives the case where σ0 = σ1, under which conditions
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Figure 3: Sensitivity and specificity under 9 standard deviation ratios.
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the two population distributions differ only in location, and the ḡ0.5,i(Uij) are uniformly distributed over the

unit interval, wtth a variance of 1/12. The variance of β̂0.5,N0,N1 then converges in ratio to

πσ2
0

3

(
N−1

0 +N−1
1

)
. (35)

In this equal–variance case, the corresponding variance for the mean difference converges in ratio to σ2
0(N−1

0 +
N−1

1 ), implying that, if the distributions are indeed Normal with equal variances, then the variance ratio
between the median difference and the mean difference is the familiar π/3, or approximately 1.0471976
(Hodges and Lehmann, 1963)[5].

4 Differences between subpopulation percentiles

For i ∈ {0, 1} and q ∈ (0, 1), a 100qth percentile of the Y –values in the ith population ξq,i is a solution in z
to the equation

0 = Fi(z)− q = E [ I(Yij ≤ z) ]− q. (36)

ξq,i is unique if Fi(·) is strictly monotonically increasing, and we will assume this from this point. The sample

estimate of ξq,i, for a sample of Ni, will be denoted ξ̂q,i,Ni
, and is calculated by substituting sample means

for the population means in (36) and solving numerically in z. The estimate ξ̂q,i,Ni
is an M–estimate in the
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terminology of Chapter 7 of Serfling (1980)[11]. Its limiting distribution as Ni → ∞ is therefore defined,
using the methods of that source, as follows. The derivative with respect to z of (36) is

d

dz
{E [ I(Yij ≤ z) ]− q} =

d

dz
[Fi(z)− q] = fi(z). (37)

It follows (assuming the usual regularity conditions) that the distribution of ξ̂q,i,Ni
tends asymptotically to

a Normal form, with mean ξq,i and variance converging in ratio to

[fi(ξq,i)]
−2
V [ #{j : 1 ≤ j ≤ Ni, Yij ≤ ξq,i}/Ni − q ] = [fi(ξq,i)]

−2 q(1− q)
Ni

, (38)

where #S denotes the cardinality of a set S. Therefore, by the rules governing variances of linear combina-
tions of independent variables, the difference ξ̂q,1,N1

− ξ̂q,0,N0
between the sample percentiles has a sampling

distribution tending to an asymptotically Normal form, with mean ξq,1 − ξq,0 and variance converging in
ratio to

[f0(ξq,0)]
−2
N−1

0 q(1− q) + [f1(ξq,1)]
−2
N−1

1 q(1− q). (39)

This equation can be used in approximate power and sample size calculations, if we have expressions for the
fi(·). Bonett and Price (2002)[1] discuss the problems involved in doing this, with the general linear function
of subpopulation medians (q = 0.5). In general, it is usual to assume a model for these power calculations,
as it is with power calculations involving the variances of Hodges–Lehmann median differences, specified by
(33). In both cases, a squared inverse density function is involved, and this squared inverse density function
may be sensitive to model assumptions.

4.1 Median differences versus differences between medians

In general, a Hodges–Lehmann percentile difference is not the same parameter as a difference between
percentiles. Methods for estimating the two classes of parameters should be viewed as methods for estimating
alternative parameters, and not as alternative methods for estimating the same parameter. A counterexample
in the case of medians is the case where the two subpopulations are exponential, with different hazard rates.
In that case, the Hodges–Lehmann median difference has a lower absolute value than the difference between
medians, which in turn has a lower absolute value than the difference between means. This is discussed in
Newson (2008)[10].

However, the two parameters may be the same if the parameter is a median (q = 0.5), and if, in addition,
the two subpopulation distributions either are both symmetrical around their respective medians, or differ
only in location, or both. If either of these conditions is even approximately true, then there may be a
perception that the two parameters are measuring something similar. Under these circumstances, we may
ask whether we gain or lose power to detect a population difference by estimating median differences instead
of differences between medians, or vice versa.

Note from (33) and (39) that the asymptotic variance formulas for median differences and differences
between medians both resolve into a sum of two terms, one corresponding to each sample. Each of these
terms in turn resolves into 3 factors. The first factor is an inverse squared density function, derived either
from one of the fi(·) or from f∆(·). The second factor is the reciprocal of the subsample number, and is
the same for corresponding terms in both expressions. The third factor is a variance, which, in the case
of a difference between medians, is the Bernoulli variance q(1 − q) = 0.5(1 − 0.5) = 0.25, and, in the case
of a median difference, is the variance of a continuous variable bounded between 0 and 1. As the second
factor (the reciprocal of the subsample number) is the same for corresponding terms in both expressions,
any advantage of a lower variance for either one parameter or the other must arise from the first factor (the
inverse squared density) or from the third factor (the variance).

For a median, the third factor (the variance factor) cannot possibly be larger for the median difference
than for the difference between medians. This is because, in this case, the variance factor for the difference
between medians belongs to a Bernoulli variable, which has mean 0.5, but which can either be 0 or 1, whereas
the variance factor for the median difference belongs to a continuous variable ḡ0.5,i(Uij), bounded between
0 and 1, with the same mean. The continuous variable will therefore always be no further from its mean
than the Bernoulli variable, and may be considerably closer to its mean. The variance factor therefore favors
median differences over differences between medians.

The first factor (the inverse squared density) will usually be higher for a difference between medians than
for a median difference. This is because, in the case of a difference between medians, the density belongs to
the original Y –variable in one of the two subpopulations, whereas, in the case of a median difference, the
density belongs to a difference between two independently–sampled Y –values, one from each subpopulation.
This difference will have a variance equal to the sum of the two subpopulation variances, if the variance of
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the difference exists at all. Distributions with higher variances usually (but not always) have higher densities
at their medians than distributions with lower variances. Therefore, the inverse squared density factor will
probably favor differences between medians over median differences.

Four simple examples of “toy models” are the homoskedastic Normal, the homoskedastic shifted expo-
nential, the homoskedastic shifted Laplace (or shifted double–exponential), and the homoskedastic Cauchy.
In all of these models, the two subpopulation distributions differ only in location, implying that the distri-
butions of the ḡ0.5,i(Uij) will be uniform over the unit interval, with a common variance of 1/12, and also
that the subpopulation densities will be equal at their respective medians. The asymptotic ratio between
the variance of the difference between medians and the variance of the median difference will therefore be
equal to

12f0(ξ0.5,0)−2

4f∆(β0.5)−2
=

3f∆(β0.5)2

f0(ξ0.5,0)2
. (40)

This implies that the squared density of the subpopulation distributions at their medians must be at least
3 times the squared density of the pairwise difference distribution at its median, in order for the difference
between medians to be no more variable than the median difference.

In the case of the homoskedastic Normal model, f∆(·) is a Normal density, with twice the variance of the
fi(·), so the squared density ratio is 2. In the case of the homoskedastic shifted exponential model, f∆(·) is
a shifted Laplace density, with the same hazard rate as the fi(·), so the squared density ratio is 1. However,
in the case of the homoskedastic shifted Laplace model, each of the fi(·) belongs to a two–way equal mixture
of a shifted positive exponential and a shifted negative exponential, implying that f∆(·) belongs to a 4–way
equal mixture of a shifted positive exponential, a shifted negative exponential, a shifted positive Gamma
with the same limiting hazard rate and an inverse squared coefficient of variation of 2, and a shifted negative
Gamma with the same limiting hazard rate and an inverse squared coefficient of variation of 2. This in
turn implies that the density f∆(·) at its median is half the density of the fi(·) at their medians, giving a
squared density ratio of 4. Similarly, in the case of the homoskedastic Cauchy model, f∆(·) belongs to a
Cauchy distribution with a scale parameter twice that of the fi(·), implying half the density at its median,
and therefore a squared density ratio of 4. Therefore, the variance of the median difference is 2/3 of the
variance of the difference between medians in the homoskedastic Normal case, is 1/3 of the variance of the
difference between medians in the homoskedastic shifted exponential case, but is 4/3 of the variance of the
difference between the medians in the homoskedastic shifted Laplace and homoskedastic Cauchy cases. This
implies that, even when the median difference is the difference between the medians, this parameter may
be estimated more or less efficiently (depending on the model) by using a confidence interval for a median
difference than by using a confidence interval for a difference between medians.

The choice betwen these two methods is therefore not a simple subject. However, the formulas in this
document can enable the numerical investigation of more complicated cases than these.
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