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1 Introduction

This document is motivated by the need to do power calculations for estimation of Kendall’s tau–a (or τa),
using bivariate data. To do power calculations, we need an expression for the sampling variance of the sample
Kendall’s tau–a in its distribution around the population Kendall’s tau–a, which does not have to be zero,
even under the null hypothesis used in the power calculations. The sampling distribution of Kendall’s tau–a
is defined in terms of the bivariate ridit function, which is in turn defined by analogy with the univariate
ridit function. We therefore need first to define univariate and bivariate ridits, and then to define Kendall’s
tau–a in terms of bivariate ridits, and then to define the sampling distribution of the sample Kendall’s tau–a,
and then to explain how this theory can be used in power calculations.

2 Univariate and bivariate ridits

Given a random variable X with a cumulative distribution function FX(·), its distribution can be defined
alternatively using the Brockett–Levene ridit function[1] RX(·), defined in turn by

RX(x) = Pr(X < x)− Pr(X > x) = E [sign(x−X)] , (1)

where E[·] denotes expectation. This function is defined on a probability–difference scale from -1 to 1. (Note
that a third alternative is the Bross ridit function[2], defined, on a scale from 0 to 1, by averaging the
Brockett–Levene ridit with 1. Bross stated, in this reference, that the word ridit stood for “with respect to
an identified distribution”, but later stated that it was named after his wife Rida.)

Given a bivariate random variable (X,Y ), with distribution function FX,Y (·, ·), we can define the bivariate
ridit function BX,Y (·, ·) (on a scale from -1 to 1) by the formula

BX,Y (x, y) = E [sign(x−X) sign(y − Y )]
= Pr [[sign(x−X) sign(y − Y ) = 1] − Pr [sign(x−X) sign(y − Y ) = −1] ,

(2)

or (in other words) as the difference between the probability that the bivariate (X,Y ) is concordant with
(x, y) and the probability that (X,Y ) is discordant with (x, y). Note that the bivariate ridit function does
not define the bivariate dstribution, as a univariate ridit function defines its univariate distribution.

The mean bivariate ridit of (X,Y ) with respect to its own distribution is known as Kendall’s tau–a,
defined as

τX,Y = E [BX,Y (X,Y )] , (3)

or (in other words) as the difference between the probabilities of concordance and discordance between 2
bivariate values independently sampled from the joint distribution of X and Y . Kendall’s tau–a is available
in multiple versions for multiple sampling schemes, discussed in Newson (2002)[3] and Newson (2006)[5].
However, we will concentrate on the case where the bivariate (X,Y )–pairs are sampled independently from a
common distribution. Kendall’s tau–a is a member of a class of distributional parameters known as regular
Hoeffding functionals, whose estimation (using corresponding sample statistics with asymptotically Normal
distributions) is discussed in Section 3.2 of Puri and Sen (1971)[6].
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3 Power calculations for Kendall’s tau–a

We will use the unified power calculations methods of Newson (2004)[4]. These methods use a quantity
known as the standard deviation of the influence function, which can be divided by the square root of the
sample number to compute the sampling standard error of the sample statistic. In our case, the sample
statistic is the sample Kendall’s tau–a, which (in the terminology of Section 3.2 of Puri and Sen (1971)[6] s
a U–statistic. The standard deviation of the influence function is asymptotically equal to

SDinf(τXY ) =
√

4V ar [BX,Y (X,Y )] = 2SD [BX,Y (X,Y )] , (4)

where V ar[·] and SD[·] denote the population variance and standard deviation, respectively. The key to
power calculations is therefore the estimation of the variance and standard deviation of BX,Y (X,Y ). This
can be done using numerical integration, if we specify a distribution for BX,Y (X,Y ).

We will assume that there exist monotonic transformations g(·) and h(·), with the feature that U = g(X)
and V = h(Y ) are variables with a bivariate standard Normal joint distribution with correlation coefficient
ρ. As Kendall’s tau–a is invariant under monotonic transformations, it follows that

τX,Y = τU,V =

(
2

π

)
arcsin (ρ) . (5)

(This is a consequence of Greiner’s relation between Kendall’s tau–a and Pearson’s rho under a bivariate
Normal distribution, discussed in Section 3 of Newson (2002)[3].) This assumption allows the possibility
that X and Y are non–Normal, and skewed in one direction or other, but it also implies that there are no
2–way relationships, and that the conditional variance of V given that U = u is the same for all u, and that
the conditional variance of U given that V = v is the same for all v.

If we can assume this, then the bivariate ridit of X and Y (with respect to their own bivariate distribution)
is equal to the bivariate ridit of U and V (with respect to their own bivariate distribution). Standard Normal
bivariate ridits are given by the formula

BU,V (u, v) = Pr [[sign(u− U) sign(v − V ) = 1] − Pr [sign(u− U) sign(v − V ) = −1]
= 2Pr [[sign(u− U) sign(v − V ) = 1] − 1
= 2 [Pr(U < u & V < v) + Pr(U > u & V > v)] − 1
= 2 [Φ(u, v|ρ) + Φ(−u,−v|ρ)] − 1,

(6)

where Φ(·, ·|ρ) is the cumulative bivariate standard Normal distribution function with Pearson correlation
coefficient ρ. (The first equality follows from (2), the second equality follows from the fact that the bivariate
standard Normal distribution is continuous, the third equality follows from the definition of the sign function,
and the fourth equality follows from the fact that the bivariate standard Normal distribution is symmetrical
around 0 in both arguments.)

It follows that Kendall’s tau–a between X and Y is given by

τX,Y = τU,V = E {2 [Φ(U, V |ρ) + Φ(−U,−V |ρ)] − 1} (7)

and the standard deviation of its influence function is given by

SDinf(τXY ) = 2SD {2 [Φ(U, V |ρ) + Φ(−U,−V |ρ)] − 1} . (8)

The value of τX,Y is alternatively given by the Greiner relation (5). The standard deviation of the influence
function is equal to 2/3 if ρ = 0 (and therefore τX,Y = 0), and has lower values for other values of ρ, and is
zero in the limit as ρ tends to 1 or -1.

It is possible to define confidence intervals for Kendall’s tau–a using Normalizing and variance–stabilizing
transformations, such as Daniels’ arcsine or Fisher’s z–transform (also known as the hyperbolic arctangent).
The confidence interval for the transformed Kendall’s tau–a will usually have a coverage probability nearer
to the advertized level than a confidence interval for the untransformed Kendall’s tau–a, and can be back–
transformed using the inverse function of the transformation function to give an asymmetric confidence
interval for the untransformed Kendall’s tau–a. A list of such transformations is given in Table 1 of Newson
(2006)[5]. If we do this, then the power calculations have to be for the transformed Kendall’s tau–a, and the
standard deviation of the influence function (given by twice the standard deviation of the bivariate ridits)
must be multiplied by dζ(τX,Y )/dτXY , where ζ(·) is the transformation function. Note that, if the null
hypothesis being tested specifies a non–zero Kendall’s tau–a, then the null tau–a must also be transformed,
in order for the detectable difference to be specified correctly as a difference between the alternative and null
tau–a values.
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3.1 Implementation in the Stata statistical software

If we are using the Stata statistical software[7] to do the power and sample size calculations, then we
can estimate SDinf(τXY ) using numerical integration, and input the result into the powercal package of
Newson (2004)[4]. The numerical integration is done using the SSC add–on package expgen to expand each
observation (representing a power–calculation scenario) to a large number of new observations (representing
combinations of power–calculation scenarios and values of the bivariate variables U and V ). The variables
U and V can be generated either by random sampling (using the runiform() function) or by using expgen

to expand the datset to have 1 observation per power calculation scenario per (U,X)-pair, and sampling
probability weights proportional to the bivariate standard Normal probability density. We can then use the
add–on SSC command normalbvr to compute the Normal bivariate ridits. To collapse the dataset to have
1 observation per power–calculation scenario, and data on the mean and standard deviation of the Normal
bivariate ridits under that scenario, we use the collapse command. We then double the standard deviaton of
the Normal bivariate ridits, under each scenario, to compute the standard deviation of the influence function
for Kendall’s tau–a under that scenario. Some examples are given in the on–line help for normalbvr.
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