Calculation of concordance and discordance counts using an AVL search tree

By R. B. Néwson

Department of Envirenmental and Preventive Medicine, Medical College of St.

Bartholomew’s Hospital, Charterhouse Square, London EC1M 6BQ.

Keywords: AVI, search tree; concordance and discordance counts; interval estimation;

jackknife method; Kendall's tau-a
Language
Fortran 77
Purpose
The concordance of two bivariate observations (x, y} and (x’, yf)_ is defined as
alx, ¥, xr, y’) = 1, -x<x;,_ y<yJr or x"<-x", y_‘" <y
0, otherwise,
and their discordance is defined as
bx, v, ¥, Y’) = 1, x<x', y' <y or x'<x, vy

0, cotherwise.

(1)

£2)

Consider a Fortran data matrix whose number of rows is stored in the INTEGER variable

NOBS and whose columns are parallel arrays X and Y, of type REAL, and FREQ, of type

INTEGER, sexving as a frequency weighting variable. If the rows of this matrix are soried in

nondescending order of ¥, then the algorithm presented here augments the matrix with two

additional columns, INTEGER arrays A and B, such that, for each index 7,

NQBS _ _
A(D) szl FREQ(I)»a(X(1), Y(,X(]), Y{J)),

NOQBS _
B(Iy = PREQ(I+b{X(D), Y(D),X(1), ¥(J)).
J=1

(3)

The A(l) and B(I) are termed concordance counts and discordance counts, respectively. If the

2
algorithm calculated the individual a{X{),Y(D),X(), Y(J)) and b(X(I}, Y{1),X(J}, ¥())), then
the computing time would be of the order of the square of NOBS. The present algorithm
produces a search tree of all the observed X-values and uses it to compute the concordance
and discordance counts in a time of order NOBSxlog(NXVALS), where NXVALS is the
numbez of distinet X-values.
Theory

The algorithm was developed fo assist in the interval estimation of concordance-

discordance functionals such as Kendall’s tau-a, which, given a discrete bivariate probability

‘mass function 1(-, -), can be defined as
r=2 3 S S 3T il wite, ¥) — fx, ¥)} (4)
Y Yex ylay

Given a sample of independent bivariate observations {{X;, ¥;): 1<i<n}, sampled from a

common population, we define

bi; = a(Xy, Yy X;, Y — b(Xy, Y X Y5)
b= > b
=1
b= b,
=1
F o= n"—l(n -]_)“.Z L. (5)

The statistic 7 is the 74 of Kendall (1970}, Chapter 3, Section 3.4, and is unbiassed for the 7
of (4). As it is a U-statistic, it can be used in interval estimation of 7 by the jackknife
method proposed in Arvesen (1969). The i’th psendovalue is

v =@ = D7 e - (0~ 27 - 26), (6)

This. method can be extended to the interval estimation of the difference between two tau-a

functionals, which might be of interest if we wish to compare variables W and X, say, as'

3
predictors of a variable Y. Given algorithms for sorting and for calculating sums and sums of
squares; the key to calculating the jackknife statistics is the efficient calculation of the t;,
which is trivial given the concordance and discordance counts.
‘Method
Definttions: search tree dala struclure

The search iree takes the form of a second matrix, whose columng are the REAL array
XVAL and the INTEGER arrays LEFT, RIGHT, NEQ, NLS and NRS. A possible search tree
is illustrated in Fig. 1. The indices of the tree matrix correspond to the nodes of fhe tree, one
node for each of the distinct X-values encountered in the input data matrix, and the Ith X~
valie encountered is stored in XVAL{I). The total number of X-values is stored in the
INTEGER. location NXVALS. The arrays LEFT and RIGHT are of pointers, such that
LEFT(I} and RIGHI(I} point to nothing if they are zero and to the indices of the left and
right daughter nodes, respectively, if they- are positive. For indices L and M,.a path from I to
M is a sequence of indices (Jy, ..., Ji) such that Jy=1I, Jy=2»M, and, if 1<i<k, then either
Jip1 = LEFT(T;) or Jy oy = RIGHT(J).

The set of indices forms a tree because there is an index, stored in the INTEGER location
ROOT, such that, for each index I, there is a unigue path from ROOT to I For each index
we define tree{]) as the set of indices J such thai a path exists from [to J. The left sabtree of
I, denoted lstree(), is defined as the empty set if LEFT{)=0 and as tree(LEFT(I})
otherwise, and the right subtrec of I, denoted rstreée(]), is the empty set if R/ GHT()=0 and
tree(RIGHT(1)) otherwise. The set. of all indices, tree(ROOT), is a search tree because, for
each index I, XVAL(N<XVAL() for all J € lstree(l) and XVAL(J)>XVAL(L} for all
J.€ rstrec())..

The array NEQ contains frequencies, so that the tree can represent a frequency distribution
of X-values. For each index J, NEQ(I) is the frequency of XVAL(]). The location NL5(]) is
used to store the sum -of NEQ(J) over all J € lstree(J), and the location NARS(I) is used to

stote the sum of NEQ(J) over all J € stree(]).

The tree is constructed to have the AVL property defined in Adel’son-Vel’skii and. Landis
{1962) and discussed in Wirtl (1976), Subsection 4.4.6. This property has the consequence
that the possible length of a path from ROOT to an index [, and therefore the coraputational
time taken to access the Ith row of the tree matrix, is bounded above by an expression-of the
order of the logarithm of the number of X-values. Fig. 1 represents a tree with the AVL
property. Racli index [is represented by a box, labelled with the value ., and containing
NEQ(D), NLS(D, NRS(I}, LEFT(]) and RIGHT(I). The box is joined by lines to LEFT(]) and
RIGH T(]}, if these are nonzero. The tree could represent a frequency distribution in which the
only X-values are 2, 4, 6, 8 a;ud_Q, with total frequencies 2, 4, 1, 3 and 2, respectively.

Definitions: elemeniary iree search operations

The method of the algorithm is built up out of elementary tree search operations, involving
an individual X-value stored in a REAL location XCUR and the location of that value in the
tree by iteration along the unmique path {J, ... , Ji), such that J;=ROOT and
XVAL(J,)=XCUR. These operations are as follows:

1. The extraction of the left and right subtotals of XCUR from the tree.

2. The updating and downdating of the tree with the value XCUR and a frequency stored
in an. INTEGER location FROUR.,

The lefi subtotal of XCUR is defined ‘as the sum of all NEQ(} for all I such that
XVAL(Iy<XCUR, and is-equal to

NLS(J) + ST {NEQJ) + NLS(J)},)
i XVAL(J;)<XCUR
and, similarly, the right subtotal is the sum of all NEQ(J) for I such that XVAL{D>XCUR,
and is equal to
NRS(7,) + >, {NEQ(J) + NRS(J)). (8)
@ XVAL(J;)>XCUR
The update of the tree with X-value XCUR and frequency FRCUR is the addition of

FRCUR to the frequency of the value XCUR in the frequency distribution represented by the

5
tree. It is performed by iterating along the path (Jy, ... , J3) and performing the following
assignments: for i from 1 to k:

1. If XCUR<XVAL(J;), then increment NLS(J;) by FRCUR.

2. If XCUR> XVAL(J;), then increment NRS(J;) by FRCUR.

3. If XCUR=XVAL(J;), then increment. NEQ(J;) by FRCUR.

The downdate of the tree with X-value XCUR and frequency FRCGUR is the subtraction of
FRCUR from the frequency of the value XCUR in the frequency distribution represented by
the tree. It is performed as the update, except for substituting “decrement” for “increment?
throughout.

Summirry vf the metlhod

The- search tree is constructed in one pass through the data matrix. The values of NEQ(I),
NLS({) and NRS(I) are then initialised to zero for all I The calenlation of concordance and
-discordance counts is carried out in two further passes through the data matrix, using a
REAL location. YCUR, which, in each pass, takes on siccessive Yovalues, in ascending order
from the lowest to the highest.

In the second pass through the data matrix, ihe successive values of YCUR are processed
as follows:

1. For each index J such that Y(J)==YCUR, set A(J) equal to the left subtotal of X(JJ and
set B(J) to the right subtotal of X{J).

2. For each index J such that Y(J)=YCUR, update the tree with value X{J) and
frequency FREQ(J)

In the third pass through the data matrix, the succeéssive values of YCUR are processed as
follows:

1. For each index J such that ¥(J)=YCUR, downdate the tree with value X(J) and
frequency FREQ(J)

2. For each index J such that Y{J)=YGUR, add the left subtotal of X{J) to B(J) and add

the right subtotal of X(J) to A(J).

Structure

SUBROUTINE CONDIS(NOBS, X, Y, FREQ, A, B, MXVAL, XVAL, NIWORK, IWORK,

IFAULT)
Formal paramelérs:

NOBS Integer

X Real array

of dimension

>NORBS
Yy Real array
of dimension
>NOBS
FREQ Integer array

of dimension

=NOBS

A Integer array
of dimension

> NOBS

B Integer array
of dimension

>NOBS

input:

input:

input:

input:

output:

output:

the number of observations (‘rows) of the

data matrix {>1)

the X-variate of the data matrix

the Y-variate of the data matrix, which
is assumed to be sorted in a

nondescending order of ¥
the fiequency weightings of the data

matrix

the ¢oncordance counts of X and Y,

weighted by FREQ

the discordance counts of X and ¥,

weighted by FREQ

MXVAL

XVAL

NIWORK

IWORK

TFAULT

Integer

Real array

of dimension

>MXVAL

Triteger

‘Integer array

of dimension

>NIWORK

Integer

input:

workspace:

input:

‘workspace:

output:

the maximury pumber of X-values

(z1)

the X-valués encotintereéd in the array X,

forming a séarch tree

the dimension of the workspace array

IWORK: NIWORK>5«MXVAL

the integer arrays used to create and

define the search iree

a fault indicator

=1if NOBS < 1

=2if MXVAL < 1

= 3if NIWORK < 5xMXVAL

= 4 if number of X-values encountered

> MXVAL

Subroutine CONDIS checks for errors in the input arguments. If there-are none, then

CONDIS calls MAKTRE in an attempt to build the search tree. If there are no more than

MXVAL distinct X-values, then the tree is built successfully, and GONDIS calls CALCD,

which uses the tree to calculaté A and B. If there are errors in Lhe input arguments, or more

than MXVAL distinét X-valués, then CONDIS sets all entries of A and B to zero. and

terminates with the appropriate érror code in JFAULT.

8

SUBROUTINE MAKTRE(NOBS, X, MXVAL, NXVAL, ROOT, XVAL, LEFT, RIGHT,

MOTHER, BALANG, IFAULT }

Formal pargmelers

NOBS

MXVAL

NXVAL

ROOT

XVAL

Integer

Real array

of dimension

>NOBS

Integer

Integer

Integer.

Real array

of dimension

>MXVAL

inpui:

Input:

Input:

Qutputs

Qutput:

Output:

as in CONDIS

as in GONDIS

as in CONDIS

nurnber of distinct values encountered in
X if this i5 no inore than MXVAL,
otherwise set to MXVAL (or to 0 if

either NOBS or MXVAL is less than 1}

indéx pointing to root node of search
tree {or 0 if"either NOBS or MXVAL is

less than 1)

the first NX VAL entries contain the first.
NXVAL distinct values encountered in

the array X

LEFT

RIGHT

MOTHER

BALANC

IFAULT

Integer array Qutput:

of dimension

>MXVAL

Integer array Output:

of dimension

>MXVAL

Integer array Output:

of dirension

>MXVAL

Integer array Quiput:

of dimension

>MXVAL

Integer Output:

the first NXVAL entries contain the left
daughter node indices for the search tree

of values in XVAL

the first NXVAL entries contain the
right daughter node tndices for the

search tree of values in XVAL

the first NXVAL entries contain the
‘mother node indices for the search tree

of values in X VAL {except

MOTHER(ROQT), which contains zero

if ROOT>0)

the first NX VAL entries contain the
indicators of balance between left and
right subtrees for the nodes of the search

tree of values in X VAL (see Wirth

(1976), Subsection 4.4.6)

a fault indicator

=1 t#f NOBS<1

=2 MXVAL<]

=3 i number of distinct X-valies

exceeds MXVAL

‘Bubroutine MAKXTRE ts a potentially stand-alone subroutine to produce an AVL search

10
tree of values of X. When MAKTRE is called by CONDIS, the outputs MOTHER and
BALANC are not used by CONDIS after return, and their space is reused for other purposes

by CALCD, so they are effectively workspace for use inside MAKTRE only.

SUBROUTINE CALCD(NOBS, X, Y, FREQ, A, B, NXVAL, ROOT, XVAL, LEFT,
RIGHT, NEQ, NLS, NRS)
Formal parameters

NOBS Integer Input: .asin CONPIS

XY Real arrays Input: asin CONDIS
of dimension

>NOBS

FREQ Integer array Input: asin CONDIS
of dimernsion

>NOBS

A B Integer arrays Output: as in CONDIS

of dimension

>NOBS
NXVAL, ROOT Tnteger Input: as output from MAKTRE
XVAL Real array Input: ‘as output from MAKTRE

of dimension

>NXVAL

11
LEFT, RIGHT Integer arrays Input: as-output from MAKTRE
of dimension

>NXVAL

NEQ, NLS, NRS Integer arrays Workspace: as described above in Method
of diménsion

>NXVAL

CALCD i3 called from CONDIS and performs the second and third passes through the
data matrix, as described .2bove in the summary of the method, to calculate the concordance
counts in A and the discordance counts in B.

Restrictions

The algoritlim does not perform the original sort by nondescending Y, or check that the
data matrix is. indeed sorted in this way. {Successive, distinct values of Y encountered by
CALCD dre assumed to be ascénding. It was thought that users would probably have access
to better sorting routines than could he provided by the present author.)

Time

The algorithm was tested for performance against an alternative subroutine,
SUBROUTINE GDTRI'V('NOBS, X, Y, FREQ, A, B, IFAULT), whose parameters function
as those of the same name for CONDIS, and which <calculates the concordance and
discordarce counts “trivially” by counting the individual concordances and discordances. The
programs were tested in batch jobs on a VAX 3600 computer under the VMS operating:
systerm.

Fach test involved the processing of 20 data matrices of equal size, whose X, Y-pairs were
taken {rom a stream of pseudorandom bivariate normal data with zero X, ¥-correlation. The
data. matrices were stored in an unformatted bhinary disk file and read by simple driver

programs, which called the appropriate concordance-discordance program and outpui the

12

augmented matrices to another unformatted binary disk file. For a fair compatison, the
processing time for CONDIS should include the time taken to sort the data matrices by
nondescending ¥ before calling (ONDIS and to sort them back to the original order
afterwards. There were therefore two driver programs written to call CONDIS, one calling
subroutines to carry out both sorts using the Heapsort method (see Wirth (1976}, Section
2.2.5), and the other performing no sorts. To assess the contribution to CPU time of input-
output and of fixed tirne costs unrelatéd to the number of observations, a further driver
program was written, performing the same input-output functions as the others but not
calling any concordance-discordance subroniines.

Table 1 'gfves the CPU times for the input-output only, the tree method. with and without
sorting, and the trivial method; for varying numbers of observations per data matrix. The
input (and output) data matrices were sorted by ¥ for the tree method without sorting, and
presented in the original order for the three other methods. Fig. 2 gives the same data
graphically for data matrix. sizes up to 1000, above which the CPU time for the frivial
method “explodes®™ quadratically. It can be seeri that the fime saved by using the tree method
becomes . considerable for matrix sizes in the middle to upper hundreds, for which the time
consumed internally by the trivial method becomes comparable to that consumed by input-
output and fixed operations.

Test data

A small matrix of test data, representing a 3x3 confingency table, is given in Table 2,

together with the correct values of A and B.
Remarks

A trivial extension to the above algorithm is to allow the possibility tliat the X-values; the
Y-values or hoth may be possibly censored lifetimes rather than data of known value. This is
essentially done in Newson (1988), Chapter 4, although the algorithm there does not

guarantee that the, tree will have the: AVL property.

13
References

AdePson-Vel’skii, G. M. & Landis, E. M. {1962) An algorithm for the organization of
information. Soviel Muathemalics, 3, 1259-1263. Translated from the Russian original in
Dokladii Akademii Neuk S5SR, 146, 263-266 (1962).

Arvesen, J, N. (1969} Jackkniﬁn_g U-statistics, Annals of Mathematical Statistics; 40, 2076-
2100.

Kendall, M. G. (1970) Rank correlation methods. Fourth edition. London: Griffin.

Newson, R. B. (1988) An analysis of cinemalographic cell division dals using U-statistics.
Ph.D. thesis, University of Sussex.

Wirth, N. (1976) Algorithins +. Dala struclures = Programs. Englewood Cliffs, New Jersey:

Prentice-Hall.

14
TABLE 1

Time in CPU seconds 1o process 20 samples of sample size NOHS using various algorithms

Algorithm
NOBS 10 only Tree, no sord Tree, with sort - Trivial
20, 2.74 3.00 2.95 2.94
40 3.25 3.34 3.42 3.24
60 3.44 3.75 3.85 3.72
80 3.82 4.15 4,29 4.28°
100 4.23 4,56 4.76 4.72
200 5.88 6.82 7.37 7.80
300 7.71 9.23 9.90 11.99
400. 9.30 11.28 12.61 16.82
500 11.13 13.85 15.25 22.81
600 12.91 16.30 18.17 29.72
700 14.68. 18.52 21.27 37.92
800 16.01 21.19 23.80 47.26
900 17.99 23.51 26.80 58.08
1000 19.37 25.55 29.71 67.76
2000 36.60 51.67 60.86 237.82
3000 53.78 76.53 93.68 507.55
4000 70.86 104.83 125.30 889.85

5000 86.81 127.93 158.40 1394.04

15

TABLE 2

A test dala mairir, cugmenied with correct values of A and B

X Y FREQ A B
1.0 1.0 1 28 0
2.0 1.0 2 15 11
3.0 1.0 3 0 24
1.0 2.0 4 17 5
2.0 2.0 5 10 10
3.0 2.0 6 3 15
0 3.0 7 0 16
2.0 3.0 8 5 9
3.0 3.0 9 12 0

16:
Figure legends
Fig. 1. An AVL search tree as used by the algorithm

Fig. 2. CPU times for 20 samples as a function of sample size

CewxixThe algorithm - page 1

SUBROUTINE CONDIS(NOBS;X,Y,FREQ,A,B,MXVAL,XVAL,NIWORK, IWORK,
+IFAULT)
SUBROUTINE CONDIS TAKES, AS INPUT, A DATA MATRIX OF ARRAYS
" WITH VARIABLES X, Y AND FREQ, SORTED BY Y,
AND USES, AS WDRKSFACE THE REAL ARRAY XVAL OF DIMENSION MXVAL
AND THE INTEGER ARRAY IWORK OF DIMENSION NIWORK
TO CREATE AND WORK WITH AN AVL, SEARCH TREE
AND GIVES, AS DUTPUT, THE SAME MATRIX AUGMENTED BY VARIABLES A AND B
(CUNCDRDANCE AND DISCORDANCE TOTALS BETWEEN X AND Y)
AND THE ERROR INDICATOR IFAULT
BEGINNING OF DATA DEFINITION SECTION
INTEGER NOBS
REAI, X (NOBS) ,Y(NDBS)
INTEGER FREQ(NOBS),A(NOBS) ,B(NOBS)
NOBS IS NUMBER OF DBSERVATIONS IN DATA MATRIX
X AND Y ARE X- AND Y-VARIABLES IN DATA MATRIX
FREf IS FREQUENCY VARIABLE IN DATA MATRIX
A AND B ARE CONCORDANCE AND DISCORDANCE VARIABLES IN DATA MATRIX
INTEGER. MXVAL
REAL "XVAL (MXVAL)
INTEGER NTWORK
INTEGER IWORK(NIWORK)
MXVAL IS MAXIMUM NUMBER OF X-VALUES IN SEARCH TREE
XVAL IS X-VALUES FOR SEARCH TREE
CNIWORK IS MAXIMUM INTEGER WORK SPACE DIMENSTON (MUST BE AT LEAST 5xMXVAL)
IWORK IS INTEGER WORK SPACE FOR SEARCH TREE
INTEGER. IFAULT _ o
IFAULT IS INDICATOR THAT SUBROUTINE CONDIS HAS FAILED
AND IS SET TO O IF COMPLETED SUCCESSFULLY
AND TO 1 IF NOBS LESS THAN 1, 2 TF MXVAL LESS THAN 1,
3 IF NWORK. LESS THAN 5«MXVAL,
4 IF* NUMBER OF X-VALUES GREATER THAN MXVAL
INTEGER. NXVAL,ROQT
NXVAL IS ACTUAL NUMBRR OF NODES. IN X-VALUE TREE
ROOT IS POINTER TO ROOT NODE OF X-VALUE TREE
INTEGER ILEFT, IRIGHT, INE(, INLS, INRS
ILEFT, IRIGHT, INEQ, INLS AND INRS ARE ARRAY STARTING ADDRESSES
IN INTEGER WORK SPACE TIWORK
FOR ARRAYS LEFT, RIGHT, NEQ, NLS AND NRS
PASSED AS PARAMETERS TO SERVANT SUBROUTINES
LEFT AND RIGHT ARE ARRAYS OF LEFT AND RIGHT POINTERS FOR NODES
CORRESPONDING TO X-VALUES IN TREE MATRIX
NEf), NLS AND NRS ARE ARRAYS OF NODE TOTALS, LEFT SUBTREE TOTALS
AND RIGHT SUBTREE TOTALS FOR X-VALUES IN TREE MATRIX
INTEGER TIFAIL
IFAIL IS ERROR INDICATOR PASSED TO SERVANT SUBROUTINES
INTEGER OBS
OBS IS OBSERVATION INDEX FOR DATA MATRIX
END 0OF DATA DEFINITION SECTION
INITIALISE 1FAULT TO NO ERROR
IFAULT=0 _ _
BEGINNING OF INITIAL SCREEN FOR ILL-DEFINED PARAMETERS
IF{NDBS.LT.1) THEN
IFAULT=1
GOTO ‘1
ELSE IF(MXVAL.LT.1)THEN
IFAULT=2
GOTO 1 -
ELSE IF(NIWORK.LT. (5%MXVAL))THEN
IFAULT=3
GOTO 1
END IF
C END OF INITIAL SCREEN FOR ILL-DEFINED PARAMETERS
C BEGINNING OF ARRAY PARAMETER STARTING ADDRESS INITIALISATION SECTION
ILEFT=1

QOQOOOQOO

IGES NGRS

O Qo o oo QO- s ReReN e OQOO

CwxsexxThe algorithm - page 2

IRIGHT=TLEFT+MXVAL
INEQ=IRIGHT+MXVAL
INLS=INEQ+MXVAL
INRS=INLS+MXVAL
END OF ARRAY PARAMETER STARTING ADDRESS INITIALISATION SECTION
BEGINNING OF SEARCH TREE INITIALISATION SECTION
(ENTAILING FIRST PASS THROUGH DATA MATRIX BY SUBROUTINE MAKTRE)
CALL MAKTRE(NOBS,X,MXVAL,NXVAL,ROOT ,XVAL,
+IWORK-(ILEFT) , IWURK(IRIGHT) IWORK(INLS) IWORK (INRS) , IFAIL)
C LEAVE FOR FAILURE SALVAGE SECTION TF SEARCH TREE CANNOT BE BUILT
IF (IFAIL.GT.0)THEN
IFAULT=4
GOTO 1
END IF
END OF SEARCH TREE INITIALISATION SECTTON
(ENTAILING FIRST PASS THROUGH DATA MATRIX BY SUBROUTINE MAKTRE)
BEGINNING OF SUGCESSFUL COMPLETION SECTION
(BNTAILING SECOND AND THIRD PASSES THROUGH DATA MATRIX BY SUBROUTINE CALCD)
CALL CALCD(NOBS,X,Y,FREQ,A,B,NXVAL,ROOT ,XVAL,
+IWORK (ILEFT) , INORK (IRIGHT) , IWGRK(INEQ) IWORK({ INLS) , INORK (INRS))
RETURN
END OF SUCCESSFUL COMPLETION SECTION
(ENTATLING SECOND AND THIRD PASSES THROUGH DATA MATRIX BY SUBROUTINE CALCD)
BEGINNING OF FAILURE SALVAGE SECTION
1 DO 2 OBS=1,NOBS
A(0BS)=0
2 B(0BS)=0
RETURN | _
¢ END OF FAILURE SALVAGE SECTION
END

Qo

sNoReRe!

sis RS’

SUBROUTINE MAKTRE (NOBS,X,MXVAL,NXVAL,ROOT,XVAL,
+LEFT ,RIGHT ,MOTHER , BALANC, IFAULT)
SUBROUTINE MAKTRE USES THE VALUES IN THE ARRAY X TO PROVIDE NODES
TO CONSTRUCT AN AVL SEARCH TREE WITH NODE VALUES STORED IN XVAL,
LEFT AND RIGHT DAUGHTER NODE POINTERS STORED IN LEFT AND RIGHT,
ROOT POINTER STORED IN ROOT,
MOTHER NODE POINTERS STORED IN MOTHER
AND BALANCE INDICATORS STDRED IN BALANC
AND USING IFAULT AS ERROR CODE
BEGINNING OF DATA DEFINITION SECTION
INTEGER NOBS
REAL X(NOBS) _
X IS AN ARRAY OF SIZE NOBS WHOSE VALUES ARE MADE INTO SEARCH TREE
INTEGER MXVAL,NXVAL,ROOT
REAL XVAL(MXVAL)
INTEGER LEFT(MXVAL) ,RIGHT(MXVAL) ,MOTHER (MXVAL) ,BALANC (MXVAL)
MXVAL, NXVAL, ROOT, XVAL, LEFT AND RIGHT ARE
AS DEFINED IN SUBRDUTINE CONDIS
MOTHER IS ARRAY OF POINTERS TO MOTHER NODES FOR INDICES OF TREE MATRIX
BALANC IS ARRAY OF INDICATORS AS TO WHETHER THE LEFT OR RIGHT SUBTREE
HAS THE GREATER HEIGHT, FOR INDICES OF TREE MATRIX
INTEGER IFAULT
IFAULT IS ERROR INDICATOR _
AND IS SET TD 0 IF COMPLETION SUCCESSFUL
1 IF NOBS LESS THAN 1
2 I'F MXVAL LESS THAN 1
3 IF NUMBER DF X-VALUES GREATER THAN MXVAL
INTEGER 0BS,TPO,TP1,TP2,TP3,TP4,TP5
0BS IS INDEX FOR ARRAY X
TPO, TPL, TP2, TP3, TP4 AND TP5 ARE POINTERS TO NODES OF SEARCH TREE
'REAL XCUR
XCUR IS VALUE OF X(0OBS) CURRENTLY BEING PLACED IN SEARCH TREE
END OF DATA DEFINITION SECTION
INITIALISE BRROR INDICATOR ‘TO ZERO

sNeRsNoNsdeNeNe:

[

OO0 O06 000 Oa0coo

CuwnxxThe algorithm - page 3

C

L

o Q

C

IFAULT=0
SCREEN FOR ILL-CONDITIGNED PARAMETERS
IF(NOBS.LT.1)THEN
IFAULT=1
NXVAL=0
ROOT=0
GOTO 7 _
ELSE_IF(MXVAL.LT;I)THEN
IFAULT=2 .
NXVAL=0
ROOT=0
GoTo 7
END IF
CREATE ROOT NODE DF SEARCH TREE
NXVAL=1
ROOT=1
MOTHER. (1) =0
XVAL(1)=X(1)
LEFT(1)=0
RIGHT{(1)=0
BALANC(1)=0

BEGINNING OF X OBSERVATION LOOP

DO 1 0OBS=2,NOBS
XCUR=X (0BS)

ENTER SEARCH TREE AT ROOT
TP1=ROOT

TEST CURRENT OBSERVATION X-VALUE AGAINST SEARCH TREE NODE X-VALUE

2 TF{XCUR-XVAL(TP1))3,1,4
X(0BS) LESS THAN XVAL(TP1)
3 IF(LEFT(TPL) .EQ.0)GOTO 5
ENTER LEFT SUBTREE
TP1=LEFT(TP1)
GOTO 2

BEGINNING OF SECTION CREATING NEW NODE ON LEFT

5 NXVAL=NXVAL+1)
LEAVE FOR FAILURKE SALVAGE SECTION IF TOO MANY X-VALUES
IF(NXVAL.GT.MXVAL) THEN
IFAULT=3
NXVAL=MXVAL
GOTO 7
END IF
LEFT (TP1)=NXVAL
MOTHER {(NXVAL)=TP1
XVAL (NXVAL) =XCUR
LEFT(NXVAL)=0
RIGHT (NXVAL) =0
BALANC (NXVAL) =0
LEAVE FOR NEXT OBSERVATION IF HEIGHT OF SUBTREE NOT INCREASED,
OTHERWISE BACKTRACK TO ENSURE PRESERVATION OF AVL PROPERTY
IF (BALANC(TP1) .GT.0) THEN
BALANC(TP1)=0
GOTO 1
END 1IF
BALANC(TP1)=-1
TP2=TP1
TP1=MOTHER (TP1)
GOTO 8 '
END OF SECTION CREATING NEVW NODE ON LEFT
X(0BS) GREATER THAN XVAL(TP1)
4 TF(RIGHT(TP1).EQ.O0}GOTO G

ENTER RIGHT SUBTREE

TP1=RIGHT(TP1)
GATO 2
BEGINNING OF SECTION CREATING NEW NODE ON RIGHT
6 NXVAL=NXVAL+1

CwxxkxThe algorithm - page 4

C LEAVE FOR FAILURE SALVAGE SECTION IF TOD MANY X-VALUES
IF(NXVAL.GT.MXVAL) THEN
IFAULT=3
NXVAL=MXVAL
GOTO 7
END IF
RIGHT (TP1)=NXVAL
MOTHER (NXVAL)=TP1
XVAL (NXVAL)=XCUR.
LEFT(NXVAL)=0
RIGHT (NXVAL) =0
BALANC (NXVAL)=0
C LEAVE FOR NEXT OBSERVATION IF HEIGHT OF SUBTREE NOT INCREASED,
¢ OTHERWISE BACKTRACK TO ENSURE PRESERVATION OF AVL PROPERTY
IF (BALANC(TP1) .LT.0)THEN
BALANC (TP1)=0
GOTO 1
END IF
BALANC (TP1)=1
TP2=TP1
TP1=MOTHER(TP1)
C END OF SECTION CREATING NEW NODE ON RIGHT
C BEGINNING OF TREE BACKTRACKING AND BALANCING SECTION
& IF(TP1.EQR.0)GOTO 1
IF(TP2.EQ.RIGHT (TP1))GOTO 9

C BEGINNING OF SECTION FOR WHEN NODE TP1 IS ENTERED FROM LEFT SUBTREE

IF(BALANC(TP1))12,10,11
10 BALANC{TP1)=-1
TP2=TP1
TP1=MOTHER(TP1)
GOTO 8
11 BALANC(TP1)=0
GOTO 1
BEGINNING OF SECTION FOR RESTORING AVL PROPERTY WHEN LEFT SUBTREE
IS TOO HIGH
12 IF(BALANC(TP2) .LT.0) THEN
C LEPT SUBTREE OF LEFT DAUGHTER TOOQ HIGH
TPO=MOTHER (TP1)
‘TP3=RIGHT (TP2)
I1F (TPO.EQ.0)THEN
ROOT=TP2
ELSE IF(TP1.E{.LEFT(TPO))THEN
LEFT (TPO)=TP2 '
ELSE
RIGHT (TPQ)=TP2
END IF
MOTHER (TP2)=TP0O
RIGHT (TP2)=TP1
MOTHER (TP1)=TP2
LEFT{TP1)=TP3
IF (TP3.GT.0)MOTHER(TP3)=TP1
BALANC(TP1)=0
BALANC(TP2)=0
ELSE _
C RIGHT SUBTREE OF LEFT DAUGHTER TOO HIGH
TPO=MOTHER (TP1)
TP3=RIGHT (TP2)
TP4=RIGHT (TP3)
TPB=LEFT(TP3)
IF(TPO.EQR.O) THEN
ROOT=TP3 _
ELSE IF(TPi.EQ.LEFT(TPO))THEN
LEPT(TPO)=TP3
ELSE '
RIGHT ('TPO)=TP3

Q0

CwxxxxThe algorithm - page 5

END IF
MOTUER (TP3)=TP0
LEFT(TP3)=TP2
MOTHER (TP2) =TP3
RIGHT (TP3)=TP1
MOTHER, (TP1)=TP3
LEFT{TP1)=TP4
IF(TP4.GT.0)MOTHER (TP4)=TP1
RIGHT(TP2)=TP5
1F(TP5.GT.0)MOTHER (TP5) =TP2
IF (BALANC(TP3) .LT.0)THEN
BALANC (TP2)=0
 BALANC(TP1)=1
ELSE
BALANC(TP1)=0
BALANC (TP2)=-1
END IF
BALANC (TP3) =0
END IF
GOTO 1
END OF SECTION FOR RESTORING AVL PROPERTY WHEN LEFT SUBTREE
18 TOO HIGH
END OF SECTION FOR WHEN NODE TP1 IS ENTERED FROM LEFT SUBTREE
BEGINNING OF SECTION FOR WHEN NODE TP1 IS ENTERED FROM RIGHT SUBTRER
9 IF(BALANC(TP1))14,13,15
18 BALANC(TP1)=1
TP2=TP1
TP1=MOTHER (TP1)
GOTOD 8
14 BALANC(TP1)=0
_ GOTO 1
¢ BEGINNING OF SECTION FOR RESTORING AVL PROPERTY WHEN RIGHT SUBTREE
C IS TOO HIGH
15 IF(BALANC(TP2) .GT.O0)THEN
C RIGHT SUBTREE OF RIGHT DAUGHTER TOO HIGH
TPO=MOTHER (TP1)
TP3=LEFT(TP2)
IF(TPO.EQ.O) THEN
ROOT=TP2
ELSE IF(TP1.EQ.RIGHT (TPO))THEN
RIGHT (TPO)=TP2
ELSE
LEFT(TPQ)=TP2
END IF
MOTHER (TP2)=TPO
LEFT (TP2)=TP1
MOTHER { TP1)=TP2
RIGHT (TP1)=TP3
TF{TP3.GT.0)MOTHER{TP3)=TP1
BALANC(TP1)=0
BALANC(TP2)=0
ELSE
C LEFT SUBTREE DF RIGHT DAUGHTER TO0O HIGH
TPO=MOTHER (TP1)
TP3=LEFT (TP2)
TP4=LEFT (TP3)
TP5=RIGHT (TP3)
IF(TPO.EQ.Q) THEN
ROOT=TP3
ELSE IF(TP1.EQ.RIGHT(TPO))THEN
RIGHT(TPO)=TP3 '
ELSE
LEFT(TPQ)=TP3
END IF
MOTHER (TP3) =TPO

aaaa

O 0O OO0 aaoan

QOO'O_'O'C)O'O

QQOQOQOO

D00

-C*****The-aigﬂrithm - page 6

LEFT (TP3)=TP1
MOTHER (TP1)=TP3
RIGHT (TP3)=TP2
MOTHER.(TP2)=TP3
RIGHT (TP1)=TP4
IF{TP4.GT.) MOTHER(TP4)=TP1
LEFT(TP2)=TP5
IF{TP5.GT.0)MOTHER (TP5)=TP2
IF(BALANC(TPS) GT.0)THEN
BALANC(TP2}=0
BALANC(TP1)=-1
ELSE
BALANC(TP1)=0
BALANC(TP2)=1
END IF _
BALANC (TP3) =0
END IF _
END OF SECTION FOR RESTORING AVL PROPERTY WHEN RIGHT SUBTREE
IS TOO HIGH _
END OF SECTION FOR WHEN NODE TP1 IS ENTERED FROM RIGHT SUBTREE
END OF TREE BACKTRACKING AND BALANGCING SECTION
GO TO NEXT VALUE OF X(0BS) IF POSSIBLE, OTHERWISE RETURN SUCCESSFULLY
1 CONTINUE

END OF X OBSERVATION LOOP

RETURN SUCCESSFULLY
RETURN
BEGINNING OF FAILURE SALVAGE SECTION
7 RETURN
END OF FAILURE SALVAGE SECTION
END

SUBROUTINE CALCD(NOBS,X,Y,FREQ,A,B,NXVAL,RQOT ,XVAL,
+LEFT,RIGHT ,NE(Q,NLS,NRS)
SUBROUTINE CALCD TAKES, AS INPUT, A DATA MATRIX OF ARRAYS
WITH VARIABLES X, Y AND FREQ, SUHTED BY Y,
AND A SEARCH TRhE OF POSSIBLE X-VALUES STDRED IN XVAL
WITH POINTERS TO LEFT AND RIGHT DAUGHTERS IN LEFT AND RIGHT,
AND GIVES, AS OUTPUT, THE CONCORDANCE AND DISCORDANCE. CDUNTS OF X AND Y

IN ARRAYS A AND B, RESPECTIVFLY

USING ARRAYS NE(j, NLS AND NRS AS SEARCH TREE WORKSPACE
BEGINNING OF DATA DEFINITION SECTION

INTEGER. NOBS

REAL X(NOBS),Y(NOBS)

INTEGER FREG(NOBS) ,A(NOBS) ,B(NOBS)

NOBS, X; Y, FREQ, A AND B ARE AS DEFINED IN SUBROUTINE CONDIS

INTEGER NXVAL,ROOT

REAL XVAL (NXVAL)

INTEGER LEFT(NXVAL) ,RIGHT (NXVAL) ,NEQ(NXVAL) .NLS (NXVAL) ,NRS(NXVAL)
NXVAL IS NUMBER OF DISTINCT X-VALUES FORMING NODES OF SEARCH TREE
ROOT IS ROOT NODE OF SEARCH TREE
XVAL IS ARRAY OF X-VALUES IN SEARCH TREE
LEFT AND- RIGHT ARE ARRAYS OF POINTERS FOR EACH X~VALUE NODE
POINTING. TO LEFT AND RIGHT DAUGHTER NODES, RESPECTIVELY
NEQ (TREPTR) CONTAINS FREQUENCY OF X- VALUE XVAL (TREPTR)

NLS(TREPTR) AND NRS(TREPTR) CONTAIN SUMS OF FREQUENCIES OF X-VALUES
IN THE LEFT AND RIGHT SUBTREES, RESPECTIVELY, OF SEARCH TREE NODE TREPTR

REAL XCUR,YCUR

INTEGER FRCUR,OBS,MINOCY,MAXOCY, TREPTR, LSUBT,RSUBT

LOGICAL ENDDAT
XCUR AND YCUR STORE VALUES OF CURRENT INTEREST FROM X AND Y, RESPECTIVELY

FRCUR STORES A VALUE OF CURRENT INTEREST FROM FRE{]

0BS STORES AN INDEX DOF THE DATA MATRIX

MINOCY AND MAXOCY STORE MINIMUM AND MAXIMUM INDICES, RESPECTIVELY,
WITH A GIVEN Y-VALUE

TREPTR STORES A NODE OF THE SEARCH TREE

CwxsxxxThe algorithm - page 7

¢ LSUBT AND RSUBT STORE LEFT AND RIGHT SUBTOTALS, RESPECTIVELY
¢ ENDDAT IS INDICATOR THAT A PASS THROUGH THE DATA MATRIX HAS REACHED THE. END
¢ END OF DATA DEFINITION SECTION
G INITTALISE TREE TO REPRESENT EMPTY SET OF OBSERVATIONS
DD 1 TREPTR=1,NXVAL
NEQ (TREPTR) =0
NLS (TREPTR) =0
NRS (TREPTR) =0
1 CONTINUE _
¢ INITIALISE ENDDAT AND MAXOCY FOR FIRST Y-VALUE LOOP
C (VISITING Y-VALUES FROM THE LOWEST TO THE HIGHEST)
ENDDAT=NOBS.LT.1
MAXOCY=0
G BEGINNING OF FIRST Y-VALUE LOOP
¢ SET YCUR TQ NEW CURRENT Y-VALUE
2 IF(ENDDAT)GOTD 30
MINOCY=MAXQOCY+1
YCUR=Y.(MINOCY)
¢ COMPUTE RANGE (QF 0OBSERVATIONS WITH CURRENT Y-VALUE
MAXOCY=MINOCY
3 MAXDCY=MAXOCY+1
IF (MAXOCY.GT.NOBS)GOTO 4
IF{Y (MAXODCY) .NE.YCUR)GOTO 5
GOTO 3
4 ENDDAT=.TRUE.
5 MAXOCY=MAXOCY-1
¢ BEGINNING OF FIRST SUBTOTAL EXTRACTION LOOP
DO 6 OBS=MINOCY,MAXOCY
XCUR=X (0BS)
LSUBT=0 '
RSUBT=0
TREPTR=RO0T
7 I1F(XCUR-XVAL(TREPTR))8&,9,10
8 RSUBT=RSUBT+NE[(TREPTR) +NRS (TREPTR)
TREPTR=LEFT (TREPTR)
GOTO 7 o
10 LSUBT=LSUBT+NEQ (TREPTR)+NLS {TREPTR)
TREPTR=RIGHT (TREPTR)
GOTO 7
9 LSUBT=LSUBT+NLS (TREPTR)
RSUBT=RSUBT+NRS (TREPTR)
A{0BS)=LSUBT
B(0OBS)Y=RSUBT
6 CONTINUE _ _
C END OF FIRST SUBTOTAL EXTRACTION LOOP
¢ BEGINNING OF TREE UPDATE LOOP
DO 11 OBS=MINDCY,MAX0OCY
XCUR=X (0BS)
FRCUR=FRE(Q (0BS)
TREPTR=RO0OT _
12 IF (XCUR~-XVAL(TREPTR))13,14,15
13 NLS (TREPTR)=NLS (TREPTR) +FRCUR
TREPTR=LEFT (TREPTR)
GOTO 12 '
15 NRS (TREPTR)=NRS (TREPTR)+FRCUR
TREPTR=RIGHT(TREPTR)
GOTD 12
14 NEQ(TREPTR)=NEQ (TREPTR)+FRCUR
11 CONTINUE o
¢ END OF TREE UPDATE LOOP
GOTOD 2
C END OF FIRST Y-VALUE LOOP
C INITIALISE ENDDAT AND MAXOCY FOR SECOND Y-VALUE LDOP
¢ (VISITING Y-VALUES TROM THE LOWEST TO THE HIGHEST)
30 ENDDAT=NOBS.LT.1

C#wns+xThe algorithm - page &

MAXQCY=0
¢ BEGINNING OF SECOND Y-VALUE LOOP
¢ SET YCUR TO NEW CURRENT Y-VALUE
16 IF(ENDDAT)GOTO 31
MINOCY=MAXOCY+1
YCUR=Y (MINOCY)
'C COMPUTE RANGE OF OBSERVATIONS WITH CURRENT Y-VALUE
MAXOCY=MINOCY
17 MAXOCY=MAX0CY+1
IF(MAXOCY.GT.NOBS)GOTO 18
IF (Y (MAXOCY) .NE.YCUR)GOTO 19
GOTO 17
18 ENDDAT=.TRUE.
19 MAXOCY=MAXOCY-1
C BEGINNING OF TREE DOWNDATE LOOP
DO 20 OBS=MINOCY,MAXOCY
XCUR=X (0BS)
FRCUR=FREQ (0BS)
TREPTR=ROO0T
21 IF(XCUR-XVAL(TREPTR))22,23,24
22 NLS (TREPTR)=NLS (TREPTR) -FRCUR
TREPTR=LEFT (TREPTR)
GOTD 21
24 NRS(TREPTR)=NRS (TREPTR) -FRCUR
TREPTR=RIGHT (TREPTR)
GOTO 21 _
23 NE{ (TREPTR)=NE{Q{TREPTR) -FRCUR
20 CONTINUE
¢ END OF TREE DOWNDATE LOOP
C BEGINNING OF SECOND SUBTOTAL EXTRACTION LOOP
DO 25 0BS=MINOCY ,MAXOCY
XCUR=X (0BS)
LSUBT=0
RSUBT=0
TREPTR=RO0T
26 IF(XCUR-XVAL(TREPTR))27,28,29
27 RSUBT=RSUBT+NE(Q (TREPTR) +NRS (TREPTR)
TREPTR=LEFT(TREPTR) '
GOTO 26
29 LSUBT=LSUBT+NEQ (TREPTR)-+NLS (TREPTR)
TREPTR=RIGHT (TREPTR) '
GOTD 26
28 LSUBT=LSUBT+NLS(TREPTR)
RSUBT=RSUBT+NRS(TREPTR)
A (0BS)=A(0BS)+RSUBT
B (0BS)=B (0BS) +LSUBT
- 25 CONTINUE
¢ END OF SECOND SUBTOTAL EXTRACTION LOOP
GOTO 16
C END OF SECOND Y-VALUE LOOP
31 RETURN

CxsksexexDriver program - Page 1

PROGRAM CORDAN
PROGRAM GORDAN TAKES AS INPUT A DATA MATRIX,
STORED IN A BCD INPUT FILE ASSIGNED TO CHANNEL 1,
AND INPUT USING FORMAT STORED IN INFMT,
WITH VARIABLES BY, ID, X, Y AND FREQ, _
SORTED BY Y WITHIN CONTIGUOUS GROUPS OF ROWS WITH SAME VALUE OF BY,
AND GIVES AS OUTPUT THE SAME DATA MATRIX, _
STORED IN A BCD OUTPUT FILE ASSIGNED TO CHANNEL 2,
AND QUTPUT USING FORMAT STORED IN OUTPFMT, _
STILL SORTED BY Y WITHIN CONTIGUOUS GROUPS OF ROWS WITH SAME VALUE OF BY,
AND AUGMENTED WITH VARIABLES A AND B
{CONCDRDANCE AND DISCORDANCE. TOTALS BETWEEN X AND Y, WEIGHTED BY FREQ,
WITHIN CONTIGUOUS GROUPS OF RDWS WITH SAME VALUE OF BY), '
USING SUBROUTINE CONDIS TO CARRY UUT THE CALCULATIONS
BEGINNING OF DATA DEFINITION SECTION
INTEGER MOBS
MOBS IS MAXIMUM LENGTH 0OF ANY DATA ARRAY
INTEGER NOBS
NOBS IS NUMBER OF OBSERVATIONS IN CURRENT BY GROUP
INTEGER MXVAL
MXVAL IS MAXIMUM NUMBER OF DISTINCT X-VALUES IN A BY GROUP
INTEGER NIWORK
NIWORK IS DIMENSION OF INTEGER WIRK SPACE FOR USE IN SEARCH TREE
INTEGER BY(10000),ID(10000)
REAL X{10000),Y(10000)
INTEGER FREQ(10000) ,A(10000) ;B{10000)
REAL XVAL{10000)
INTEGER IWORK({50000)
BY IS ARRAY OF BY-GROUP VALUES (ALL SAME WITHIN A BY GROUP)
ID IS ARRAY OF OBSERVATION IDENTIFIERS (FOR SUBSEQUENT SORTING)
X AND Y ARE ARRAYS OF X- AND Y- VALUES F0OR DATA MATRIX
FREQ(I) IS NUMBER (OF OBSERVATIONS IN ORIGINAL DATA MATRIX
REPRESENTED BY THE I°TH OBSERVATION IN CURRENT DATA MATRIX
A AND B ARE CONCORDANCE AND DISCORDANCE VARIABLES ADDED TO DATA MATRIX
XVAL IS ARRAY OF POSSIBLE X-VALUES FOR USE IN SEARCH TREE
IWORK IS INTEGER WORK SPACE FOR USE IN SEARCH TREE
INTEGER BYCUR,BYIN, IDIN
REAL XIN,YIN
INTEGER FREQIN
BYCUR IS VALUE OF BY FOR BY GROUP CURRENTLY BEING PROCESSED
BYIN, TDIN, XIN, YIN AND FREQIN AR USED FOR STORAGE
OF A NEWLY INPUT OBSERVATION OF THE DATA MATRIX
INTEGER O0OBS
0BS. IS INDEX OF CURRENT DBSERVATION OF DATA MATRIX
LOGICAL ENDINF _
ENDINF IS INDICATOR THAT END OF INPUT FILE HAS BEEN REAGHED
INTEGER IFAULT _
TFAULT TS INDICATOR THAT A SUBROUTINE HAS FAILED
(RETURNED AS ZERO IF SUBROUTINE COMPLETES SUCCESSFULLY)
CHARACTER#48 INFMT,QUTFMT '
INFMT AND DQUTFMT ARE INPUT AND OUTPUT FORMATS
DATA MOBS,MXVAL ,NIWORK/10000,10000,50000/
DATA INFMT/?(2110,2F10.4,110)7/
DATA OUTFMT/’ (2110,2F10.4,3110)°%/
END OF DATA DEFINITION SECTION
BEGINNING OF FILE INITIALISATION SECTION
OPEN (UNIT=1,FILE=*FOR001’,STATUS="0LD’,
+READONLY)
OPEN (UNIT=2,FILE=>FQR002’ ,STATUS="NEW’ ,
+CARRIAGECONTROL='LIST?)
READ (1, INFMT,END=18 ,ERR=11)BYIN, IDIN,XIN,.YIN,FREQIN
ENDINF=.FALSE.
GOTO 16
18 ENDINF=.TRUE.
GOTO 10

O O aoaoaooaaanOdaoo

Qoo aQ @

oo 0O g aaa

GO

CxsxxxDriver program - Page 2

¢ END OF FILE INITIALISATION SECTION
C BEGINNING OF BY GROUF LOOP

16 BYCUR=BYIN
NOBS=1

C BEGINNING OF INPUT SECTION

00

13 BY{NOBS)=BYIN
ID(NOBS)=IDIN
X (NOBS)=XIN
Y(NOBS)=YIN
FRE{} (NOBS)=FREQIN
READ (1, INFMT ,END=17 ,ERR=11)BYIN, IDIN,XIN,YIN,FREQIN
IF(BYIN NE. BYCUH)GOTU 14
NOBS=NOBS+1
IF (NOBS.GT.MOBS)GOTD 19
GOTQ 13
19 WRITE(6,20)BYCUR,MOBS
20 FDRMAT(lX *WARNING -~ MDRD DBSERVATIDNS IN BY GROUP ?*,
+I&,7 THAN THE MAXIMUM (°,14,7)7?)
'GDTD 14
17 ENDINF=.TRUE.
END OF INPUT SECTION _
CALL SUBROUTINE CONDIS, REPORTING IN CASE OF FAILURE
14 CALL CONDIS(NOBS,X,Y,FREQ,A,B,MXVAL,XVAL,NIWORK, IWORK, IFAULT)
IF (IFAULT.GT. O)WRITE(S 21)BYCUR IFAULT
21 FORMAT(1X,*WARNING - SUBROUTINE CONDIS HAS FATLED?
+/1X, *FAILURE OCCURRED IN BY GROUP °,I18,’, FAULT CODE 7, I4)
BEGINNING OF QOUTPUT SECTION
DO 15 0BS=1,NOBS
15 WRITE (2, UUTFMT)BY(OBS) ID(0BS) ,X(0BS),Y(0BS) ,FREQ(UBS),
+A (0BS) ,B(0DBS)
END OF QUTPUT SECTION
IF(ENDINF)GOTO 10
GOTO 16
END OF BY GROUP LOOP
BEGINNING OF TERMINATION SECTION
11 WRITE(6,12)BYCUR
12 FORMAT(1X, *BAD DATA ENCOUNTERED IN BY GROUP °,I8)
10 CLOSE(UNIT=1)
CLOSE (UNIT=2)
CALL EXIT
END QF TERMINATION SECTION
END

Notes for assistance of referees - page |

Notes for assistance of referees

The enclosed disk contains several files, including the algorithm, the driver program,
a test data file, an expected output file for the test data, and several others. which, it was
thouglit, might be of assistance to referees by providing some background information on the
use and testing of the algorithm by the author. This testing was done on a VAX 3600
commputer under the VMS operating system, and extensive use was made of the statistical
‘package SAS to carry out “trivial” operations omn data input to, and output from, the
algorithm,

The most tmportant files.on the disk are as follows:

CONDIS.FOR - The a.l_gorlt.hm (in machine-readable form).

CORDAN®O.FOR - The driver program (in machine-readable form).

TESTLDAT - A BCD file of test data for input by the driver program.

TEST2.DAT - A BCD file identical to that which should be output by the driver
‘program when TEST1.DAT is the input file.

The driver program inputs from the input file (channel 1} a sequence of data matrices
whose columns are ihe INTEGER atrays BY and ID, the REAL arrays X and Y and the
INTEGER array FREQ, inputting each row with a format stored in INFMT, which is set to
(2110,2F10.4,I10). The array BY is a matrix- identifier, so that a set of contignous rows of
input data with the same value of BY is treated as a single data matrix. The array ID is a
Tow idéntifier, enabling the resorting of the data matrix after processing. (The driver program
assumes each inpuf-data matrix to be sorted by nondescending value of Y.) The arrays X, Y
and FREQ correspond to the parameters of the same names for the subroutine CONDIS, as
described in the structure section of thé introductory text. The output data inatrices are
output to the output file {channel 2}, and are the input data matrices augmented on the right
by the INTEGER arrays A and B, which contain the concordance and discordance counts
described in the introductory text, corresponding to the parameters of the same names passed
to subroutine CONDIS. The output format is stored in OUTFMT, which is set to
(2110,2F10.4,3110). Diagrostic comments are output to channel 6, the standard output. The
driver program was written to run under VMS, but, if it is adapted for use under other
systems; it will probably réquire little modification apart from the fi le OPEN and CLOSE
statemnents.

The data file TEST1.DAT contains 3 data matrices. The first is the set of test data
of Table 2 in the introductory text. The second is an “expanded” version of these test data;
where each I'th Tow in the data matrix of Table 2 is replaced by FREQ(I) rows, each with
the value of FREQ set to 1. The third is from H. E. Daniels and M. G. Kendall (1947),
Biomeirika, 34, 197-208, and is the example elucidated in Table 2 of that paper (which, it
should be noted, contains an error). The Y-values in this data matrix correspond to column
‘M of Table 1 of Daniels and Kendall, and the X-values corréspond to Column A of that
Table. Each of the 3 data matrices i3 already sorted in nondescending order of Y, as the
program in CORDANQ.FOR does not perform this sort. The file TEST2.DAT contains the
same data as TEST1.DAT, augmented on the right by concordance and discordance counts.
If the algorithm and driver program are working correctly, then the ouiput produced when
the input file is TEST1.DAT should be identical to TEST2.DAT.

There are several ofher [iles which, although not essential to implementing the
algorithm as described in the inéroductory text, provide some background information on the
testing of the algorithm. In particular, the FORTRAN programs mentioned in the section on
CPU time are all present on the disk. The files containing thése progranis are as follows:

HEAPY.FOR - A subroatine HEAPY, taking as’ mput/output & data matrix
whose columns are the INTEGER array 1D, the REAL arrays X and Y, and the INTEGER:
array FREQ, and using Heapsort to sort the rows of the matrix in a nondescendlng order of
Y.

HEAPID.FOR - A subroutine HEAPID, taking as input/output a data matrix
whose colurans are the INTEGER. array 1D, the REAL arrays X and Y, and the INTEGER
arrays FREQ, A and B, and using Heapsort to sort the rows of the matrix in 4 nondescending
order of 1D.

Notes for assistance of referees - page 2

CDTRIV.FOR. - The subroutine CDTRIV mentioned in the section on CPU time,
and performing the same function as the subroutine CONDIS and its servants, but
performing it “trivially” by counting the individual concordances and discordances.

- CORDANLFOR - A driver program calling CONDIS, essentially the same as the one
in CORDANO.FOR except that it inputs its data matrices from, and outputs its augmented
matrices to, unformatted binary files of a kind used under VMS. (This was done to reduce.
input/output CPU time to a minimum.) This program, with the necessary subroutines, is the
one whose CPU times appear in Table 1 and Fig. 2 as “Tree, no sort.”

CORDAN2.FOR - A driver program, as the one in CORDANLYFQOR except that it
calls subroutine HEAPY before calling CONDIS, and calls subroutine HEAPID after calling
CQONDIS, so that it ¢an input data matrices sorted by ascending ID and ontput augmented
data matrices also sorted by ascending ID. This program, with the nécessary subroutines; is
the one whose CPU times appear in Table 1 and Fig. 2 as “Tree, with sort.”

CORDAN3.FOR - A driver program, as the one in CORDANLFOR except that it
calls subrontine CDTRIV instead of CONDIS, and does not have the workspace arrays
required for passing to CONDIS. This: program, with the necessary subroutine CDTRIV, is
the one whosé CPU times appear in Table 1 and Fig. 2 as “Trivial.”

INOUT.FOR - A driver program, as the one in CORDAN3.FOR except that
there. is a CONTINUE statement instead of the call to a concordance-discordance subroutine,
so that the program only inputs the data matrix and cutputs the same data matrix
angmented with “empty” concordance and -discordance counts. This program is the onc whose
CPU times appear in Table 1 ard Fig. 2 as “I/O only.”

These FORTRAN programs were tested for time performance by running VMS batch
jobs which assigned input channels 1 and 2 and then ran the appropriate program. The CPU
times in Table 1 and Fig. 2 are the total CPU times for those batch jobs.

The input files for these batch jobs, and also the command files in which these jobs
were submitted, were constructed using the SAS package under VMS. The bivariate
pseudorandom data for the input files were derived from a SAS data set TIME1 of 100,000
observations, containing pseudorandom mnormal variables X and Y. Subsets of these
ohservations were written to unformatted binary data files, suitable Tor input to the
FORTRAN programs. The egsential SAS command files used for these processes are present
on the disk, and were executed from interactive SAS sessions by using the SAS %INCLUDE
command after having set values for any SAS macro variables used inside the SAS command
files. The SAS command files used. in the time tests are as follows:

TIMEL.SAS - Creates the SAS data set TIMEL.

TIME2.SAS - Extracts from SAS data set TIME] a number of samples equal to
4 SAS macro variable NSAMS, each containing a number of observations equal to a SAS
macro variable SAMNUM, and outputs these samples as data matrices to an unformatted
binary data file, and then constructs and submits a batch job in which this data file is input
to a program whose name is specified in the SAS macro variable PROG. (This SAS command
file was used to test the programs in INOUT.FOR, CORDAN2.FOR, and CORDAN3.FOR.)

TIME4.SAS - As TIME2.SAS except that the data matrices are each sorted by
nondescending value of Y before being output to an urformatted binary data file. (This SAS
command file was uséd to test the program in CORDANL.FOR.)

One other SAS command file Is also present on the disk, and illustrates the
possibilities for the use of the algorithm in conjunction with SAS under VMS. This ¢command
file is:

CAVL5.8A8 ~ Given a SAS data set whose name is stored in a SAS macro
variable DS, assumed to contain variables BY and ID and to be sorted by these variables,
CAVL5.SAS uses the program in CORDANI1.FOR, to calculate concordance and discordance
counts for two variables whose names are passed in SAS macro variables X and Y, and then
uses these counts to caleculate the jackknife pseudovalues for Kendall’s tan-a (formula (6) in
the introduction text) and adds the pseudovalues to the original data set in a variable whose
name is passed in a SAS macro variable PSEUD.

The other file included on the disk is CONDIS1.PUB, produced by the EXP word

Notes for assistance of referees - page 3

processor and containing the introduction description, the algorithm, the driver program,
these notes for assistance of referees, and a covering letter.

Roger B. Newson,

Department of Erivironmental and Preventive Medicine,
Medical College of 5S¢, Bartholomew’s Hospital,
Charterhouse Square,

London EC1M 6BQ.

27 November, 1989.

Dear Sir or Madam,

Please find enclosed a description of an algorithm, which I hereby submit to be considered
for publication in the Statistical Algorithms section of Applied Statistics. The algorithm is
intended for use in the ‘interval estimation, by the jackknife method, of concordance-
discordance - funct.lonals such as. Kendall’s. tau-a and differencés between pairs of tau-a
functionals. I have implemented this algorithm in FORTRAN under VMS o6n a VAX
computer and under MVS on the Amdahl at the University of London Compnuting Centre,
where I have also implemented a closely related algorithm in VS Pascal.

Please find enclosed, also, a 360K double-sided IBM PC 5.25 inch floppy disk, containing
the algorithm. (file CONDIS.FOR), the driver program (file CORDANG.FOR), a file of test
input data for the driver program (TESTI1.DAT), and the corresponding output file
(TEST2.DAT). The disk also contains several other files which mlght be useful for refereés as
background information, ‘and details of all of them are given in the accompanying notes
headed “Notes for assistance of referees.” In particilar, I have included on. the disk a file,
CONDISL.PUB, prodiced using the EXT word processor and containing all the human-
readable information enclosed here except for the figures, on the off-chance that you are doing
your word processing using EXP under MS/DOS on an IBM-compatible PC as I am.. -

Yours sincerely,

C‘k ST \ QU

Roger Newson.

Calculation of concordance and
discordance counts using an AVL
search tree '

By R. B. HEWSON -

Fig. L. An AVL search. tree as used
by the algorithm

OuLl T390, 33 0RAWTRE L L am D

ROOT=1

XVAL (B) =2
NEG (5) =2
NLS (3) =0
NRS (5) =0

LEFT (B) =0

RIGHT (B) =0

XVAL (3) =9
NEQ (3) =2
NLS (3) =0
NRS (3) =0

LEFT (3) =0

RIGHT (3) =0

XVAL (1) =8

NEG (1) =3

NLS (1) =7

NRS (1) =2

LEFT (1) =4

RIGHT (1) =3

XVAL (4) =4 4 3
NEQ (4) =4
NLS (4) =2
NAS (4) =1
LEFT (4) =5
RIGHT (4) =2

5 2 XVAL (2) =6

NEQ (2) =1

NLS (2) =0

NRS (2) =0

LEFT (2) =0

RIGHT (2) =0

Calceulation of concordance and
dizcordande counts using awn AVD
search tree.

By R. B, NEWSON _-

Fig. 2. CPU times for 20 samples as
a tunction of sahmple size

Dul L3582, %% 1 Trnme L Mo

(seconds) for 20 samples

CPU time

80+
704 o
: s Trivial
604
50+
40+
30 e Tree, wWith sort
— . _——=Tree, no sort

20+ a __e—=1/0 only

10 e

O_.. T T T T] T -] i 1 T

0 4100 200 300 400 500 600 700 800 S00 1000

Number of observations per sample

ROYAL STATISTICAL SOCIETY

75 Enford Street,
London W1H 2BH

Telephone 01-723 5882

{internationat + 441 723 5882)
06 March 1990.

Dr. R.B. Newson,

Dept. of Environmental & Preventive Medicine,
Medical College of St.Bartholomew's Hespital,
Charterhouse Square, '
London.

ECIM 6BQ.

Dear Dr, Newson,

Alg 735

Your algorithm was classed ‘good' or 'very good’ by the referee
for most attributes of quality of description and programming.
The only suggested improvement was a check that input arrays were
sorted correctly. However, both he and I are concerned about
the applicability of the algorithm. Given current constrainis on
space available to the algorithms section in Applied Statistics,
I am afraid I find it difficult to justify devoting so many pages
to an algorithm which comes into its own computationally only
whz: there are more than 1000 observaticns. Surely there cannot
be many readers with such problems?

If I am misinterpreting the situation, please let me know.
r

Yours sincerely,

David T. Muxwarthy.
Joint Algorithms Editor,

