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1 Introduction

Applied statisticians frequently have good reasons for calculating infinite confidence intervals (with a lower
bound of −∞ and/or an upper bound of +∞) for estimating scalar parameters. Some practical examples
are mentioned in Newson (2006)[4], in which it is stated that confidence intervals for Theil–Sen percentile
slopes (including Hodges–Lehmann percentile differences) can have lower confidence limits of −∞, upper
confidence limits of +∞, or both. This is because these confidence intervals are derived by inverting finite
confidence intervals for versions of Somers’ D or Kendall’s τa[3].

In the Stata statistical software[6], the quantities −∞ and + are represented by the storable double–
precision numbers c(minddouble) and c(maxdouble), respectively. These are currently listed as

-8.9884656743e+307

and as
8.9884656743e+307

respectively.
If the user has nstalled the optional add–on packages somersd, expgen, scsomersd and rcentile[5]

(downloadable within Stata using the ssc command), and then types, in Stata,

sysuse auto, clear

rcentile weight, ce(0(25)100) transf(asin) tdist

then the user will see confidence intervals for percentiles 0, 25, 50, 75 and 100 of the variable weight in the
auto dataset, which has 1 observation for each of 74 1970s car models. And Percentile 0 (also known as the
minimum) has a lower confidence limit of −∞, and Percentile 100 (also known as the maximum) has a lower
confidence limit of +∞. These values are sensible, as there is no evidence in the data that a car cannot
have a higher weight than the sample maximum, or that a car cannot have a lower weight than the lower
confidence limit (or even a negative weight).

And, if the user then types, in Stata,

rcentile weight in 1/4, transf(asin) tdist

then the user will see a confidence interval for the population median, estimated from the first 4 car weights,
with a lower confidence interval of −∞ and an upper confidence limit of +∞. This is not unreasonable.
After all, if we assume nothing about the population distribution except that we are sampling individuals
independently from it, then we cannot make many inferences from a sample of 4. For instance, if the
population is a mixture of 2 equal–sized and widely–separated subpopulations (‘Subpopulation A” and
“Subpopulation B”), then 1/16 of samples of 4 will be entirely from Subpopulation A and 1/16 of samples
of 4 will be entirely from Subpopulation B, implying that 1/8 of samples will be totally unrepresentative
of the population as a whole. Under these conditions, the user cannot really be “95% confident” about the
location of the population median, except that it is somewhere on the real line.

Stata makes it easy for the user to talk about infinite confidence limits. However, it is less easy to explain
these confidence limits rigorously, in a way that might be understood by a first–year student of real analysis,
or of naive set theory. It might therefore be useful to explain the extensions of real–number theory necessary
to talk about infinite confidence limits. After all, in a set–theoretic definition of the real numbers such
as Stoll (1963), we rarely see any discussion of any such numbers as −∞ and +∞, although real analysis
textbooks frequently contain notation such as x→∞ and x→ −∞.

We will explain the necessary extensions under the following headings:
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1. Extending the real numbers to include −∞ and +∞.

2. Extending the binary inequality operators of real analysis to all ordered pairs of extended real numbers.

3. Extending the infimum and supremum operators to all subsets of the extended real numbers.

4. Extending the binary pairwise mean to all pairs of extended real numbers.

We will then introduce the concept of a ridit function for an arbitrarily–distributed scalar random
variable. Ater this, we will use the extended analytical notation previously introduced to define the left
and right inverse ridit functions, and their extended binary pairwise mean, the central inverse ridit funtion.
Once these extensions have been added to the notation, we will be able to define extended percentiles, and
even extended percentile slopes, differences and ratios[4]. The aim of this exercise is partly to enable applied
statisticians to ward off unjustified criticism about insufficient rigor from pettifogging pure mathematicians
and career methodologists. Other benefits might include helping programmers to think clearly when writing
programs to calculate confidence intervals for rank statistics.

2 Extending the real numbers to include −∞ and +∞
In a set–theoretic definition of the real numbers such as that of Stoll (1963)[7], real numbers are defined in
terms of rational numbers, which have previously been defined in terms of integers, which have previously
been defined in terms of natural numbers, which have previously been defined in terms of sets (using the
Axiom of Infinity). Once natural numbers have been defined, real numbers are typically defined as equivalence
classes of bounded sequences {an} of rational numbers. These classes are defined using the binary equivalence
relation

lim
n→∞

|an − bn| = 0 (1)

as a relation (that is to say a set of ordered pairs ({an}, {bn}) of bounded infinite sequences of rational
numbers. This binary relation can be shown to be an equivalence relation, as it is reflexive, symmetric and
transitive. (Note that the notation n → ∞ has usually been defined earlier, without acknowledging the
existence of an infinity for n to tend to.)

In a similar way, we can define −∞ and +∞ as classes of sequences. −∞ is the class of sequences {an}
tending to −∞, and +∞ is the class of sequences {bn} tending to +∞. (Once again, we have usually defined
“n tending to infinity” without having defined an infinity for n to tend to.)

Once we have defined the set of real numbers R, we can then define an extended set of real numbers

R∗ = R ∪ {−∞,+∞} . (2)

3 Extending inequality operators to ordered pairs of extended
reals

Real numbers have the feature that a subset S of R that is bounded below has a maximum lower bound
inf(S), and a subset S of R has a minimum upper bound sup(S).

We will extend the binary operators < and > to ordered pairs in the Cartesian product R∗ ×R∗. Recall
that a relation is a set of ordered pairs, definable as a subset of a Cartesian product. We will extend the
< relation from R × R to R∗ × R∗ in such a way that −∞ < +∞ is true, and −∞ < x < +∞ for x ∈ R.
Similarly, we will extend the > relation from R× R to R∗ × R∗ in such a way that +∞ > −∞ is true, and
+∞ > x > −∞ for x ∈ R. We can then extend the ≤ and ≥ operators in the usual way to R∗ × R∗ by
defining x ≤ y as (x = y) ∨ (x < y), and defining x ≥ y as (x = y) ∨ (x > y), where ∨ is the logical “or”
operator. It is easy (but time–consuming and space–consuming) to verify that the < and > operators satisfy
the strict ordering axioms (as they are irreflexive, anti–symmetric and transitive), and that the ≤ and ≥
operators satisfy the partial ordering axioms (as they are reflexive and transitive).

4 Extending the supremum and infimum to subsets of extended
reals

The set of real numbers R has the feature that a non–empty subset S of R that has a lower bound has a
maximum lower bound inf(S), and a non–empty subset S of R with an upper bound has a minimum upper
bound sup(S). These definitions can be extended to subsets of R∗, but will not be the same definitions,
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because every subset of R∗ will then have an infimum and a supremum. Therefore, the extended infimum
and supremum functions will have new names, distinct from those of the unextended supremum and infimum
functions.

For a subset S of R∗, we will define

inf∗(S) =


+∞, S = ∅
−∞, S 6= ∅ and −∞ ∈ S,

−∞, S 6= ∅ and −∞ /∈ S and S ∩ R unbounded below,

inf(S ∩ R), S 6= ∅ and −∞ /∈ S and S ∩ R bounded below.

(3)

And, similarly, we will define

sup∗(S) =


−∞, S = ∅
+∞, S 6= ∅ and +∞ ∈ S,

+∞, S 6= ∅ and +∞ /∈ S and S ∩ R unbounded above,

sup(S ∩ R), S 6= ∅ and +∞ /∈ S and S ∩ R bounded above.

(4)

Note that, if we define inf∗(·) and sup∗(·) in this way, then every subset S ⊆ R∗ (even the empty set) has
an extended infimum and an extended supremum, as a subset S of R∗ cannoot be “unbounded”, even if it
is empty (in which case sup∗(S) = −∞ < +∞ = inf∗(S)). This feature of the inf∗(·) and sup∗(·) functions
will be useful later, when we define inverse ridits.

5 Extending the binary pairwise mean to all pairs of extended
reals

Not all functions defined from the extended reals R can be extended in any simple way to define functions
from R∗. And not all binary operations defined from the Cartesian product R × R can be extended in any
simple way to define binary operations from R∗×R∗. However, we can do this with the binary mean function

µ(x, y) = (x+ y)/2, (5)

for x and y in R. Note that this binary function is commutative (meaning that (x, y) = µ(y, x) for all x and
y in R). This is as we expect a pairwise mean to be.

In this case, there are 3 classes of possibilities for x, namely x = −∞, x = +∞, and x ∈ R. And, there
are 3 classes of possibilities for y, namely y = −∞, y = +∞, and y ∈ R. This implies 3 × 3 = 9 classes of
possibilities for (x, y)–pairs. So the extended function µ∗(·, ·) is best defined using a table, with 1 row for
each combination of possibilities. These possibilities, with the corresponding values of µ∗(x, y), are listed in
Table 1.

Table 1: Values of µ∗(x, y) for combinations of x and y in R∗.
x y µ∗(x, y)

−∞ −∞ −∞
−∞ +∞ 0
−∞ y ∈ R y
+∞ −∞ 0
+∞ +∞ +∞
+∞ y ∈ R y

x ∈ R −∞ x
x ∈ R +∞ x
x ∈ R y ∈ R µ(x, y)

We see that the extended mean function µ∗(·, ·) is commutative, the extended mean of 2 infinite values
in the same direction is the same infinite value, the extended mean of 2 infinite values in opposite directions
is zero, the extended mean of an infinite value and a finite value is the finite value, and the extended mean
of 2 finite values is their unextended mean. This implies that the extended mean function has the feature
that, for x≤ y, x ≤ µ∗(x, y) = µ∗(y, x) ≤ y. So, the extended mean function behaves as we would expect an
extended mean function to behave.
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6 Definitions of ridit functions

Given a scalar random variable X, the Bross ridit function[2] of X is defined for real (or extended real)
x by the formula

RX(x) = Pr(X < x) +
1

2
Pr(X = x), (6)

which is on a scale from 0 to 1. Note that the Bross ridit function is an alternative to the cumulative
distribution function

FX(x) = Pr(X ≤ x), (7)

which also uniquely specifies the distribution of the variable X. Both FX(x) and RX(x) are monotonically
non–decreasing in x, and both tend to 0 in the limit as x→ −∞, and both tend to 1 as x→∞. However,
FX(·) is right–continuous, but RX() is not always either right–continuou or left–continuous, although both
functions are continuous (and equal) for a continuously distributed random variable X.

An alternative definition of ridits is the Brockett–Levene ridit function[1], defined for real (or ex-
tended real) x as

R∗X(x) = Pr(X < x) − Pr(X > x) = 2RX(x) − 1, (8)

which is on a scale from -1 to 1, and which is mostly used as a means of computing the Bross ridit function by
averaging the Brockett–Levene ridit function with 1, avoiding the computational precision issues associated
with adding tiny half–probabilities to huge probabilities. We will be focussing on the Bross ridit function.

In mathematical statistics, ridits are mainly used in deriving the asymptotic distribution theory of rank
statistics (which are really ridit statistics). We will focus on inverse ridits, also known as percentiles. For a
quantity q ∈ [0, 1], we might want to estimate the 100qth percentile for a sampled population distribution,
with confidence limits, and with a point estimate equal to the 100qth percentile of the sample distribution.
For continuous distributions, the 100qth percentile is defined simply as the inverse ridit function R−1X (q),
also known as F−1X (q), and can be computed by inverting the distribution function FX(·). However, applied
statisticians in real life do not encounter continuous distributions, because they always sample finite samples
from a population with a finite number of possible X–values (limited by the huge but finite number of values
representable in finite precision in a finite number of bytes). In real life, we can assume, without loss of
generality, that there are N possible values of a variable X, known as mass points, which we can order in
ascending order as x1, . . . , xN . The unkown population distribution is defined by a probability mass function
fX(·), with the feature that, for real (or extended real) x,

Pr(X = x) =

{
fX(x), x ∈ {xi : 1 ≤ i ≤ N},
0, otherwise.

(9)

(We can assume, without loss of generality, that fX(xi) is strictly positive for all positive integers i from 1
to N .) A value x on the real line (or the extended real line) is either less than x1, greater than xN , in the
set of mass points x1, . . . , xN , or in an open interval (xi, xi+1) for some i such that 1 ≤ i < N . In this case,
the Bross ridit function can be redefined as

RX(x) =

{
1
2fX(x) +

∑
i:xi<X fX(xi), x ∈ {xi : 1 ≤ i ≤ N},∑

i:xi<x fX(xi), otherwise.
(10)

An example of a ridit function defined in this way is illustrated in Figure 1, which shows the Bross ridit
function as defined for the variable trunk (trunk space in cubic feet) for the auto data distributed with
the Stata statistical software[6]. The ridit function at the mass points is given as small black circles on the
vertical parts of the line, and the ridit function outside the mass points is given as the horizontal parts of
the line. We see that there are mass points at all N = 17 integers from x1 = 5 to xn = 23 inclusive, and no
other mass points, implying that the ridit function is constant within each of the empty intervals (−∞, xi),
(xN ,+∞), and (xi, xi+1) for 1 ≤ i ≤ N . As implied by (10), each mass point has a Bross ridit halfway
between the constant value for the previous empty interval and the constant value for the successive empty
interval. Note that the ridit function defined as in (10) has a value 0 at x = −∞ and a value 1 at x = +∞,
although these values are not included in Figure 1.

7 Inverses for ridit functions

We might want to define an inverse function for the ridit function, with a view to defining inverse ridits (also
known as percentiles) for X. That is to say, we might want to find a solution in θ to the equation RX(θ) = q
for q in the open or closed interval from 0 to 1.
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Figure 1: Bross ridit function for the variable trunk in the auto data.
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This would be easy for a continuous variableX with a continuous distribution function FX(·), synonymous
with RX(·), because FX(x) is then continuous and monotonically increasing in x, implying that there is a
unique inverse function F−1X (·), which is also strictly monotonically increasing. In that case, the 100qth
percentile, for q ∈ (0, 1), is equal to F−1X (q). However, with the ridit function of Figure 1, we see that
multiple non–mass points x share the same Bross ridit function value. Also, there are values of q ∈ (0, 1) (on
the vertical connection lines between the flat regions of the non–mass intervals) that are not the Bross ridit
of any number x. So, the Bross ridit function only appears to be invertible for a finite number of values of
q that are ridits of mass points.

Fortunately, using the definitions of the previous Sections, we can define “generalized inverse ridit func-
tions”, which have some of the features that we would like an inverse ridit function to have. These features
might include mapping values of q equal to the ridits of the mass points back to the mass points, and map-
ping values of q in between the ridits of 2 consecutive mass points either to the most sensible mass point
or to a sensible intermediate value. They might also include mapping q = 0 to x1 as the “0th percentile”,
and mapping q = 1 to xN as the “100th percentile”, enabling us to define inverse ridits from the closed
interval q ∈ [0, 1], instead of from the open interval q ∈ (0, 1). And, ideally, they might even include meth-
ods enabling us to define confidence limits, or at least conservative confidence limits, around the sample
percentiles, for the corresponding population percentiles, under a wide range of sampling schemes, possibly
involving clustering and/or sampling–probability weighting.

We will use the extended real line R∗ of (2), the extended definitions inf∗(·) and sup∗(·) of (3), and the
extended pairwise mean function µ∗(·, ·) of Table 1 to define, for the ridit function RX(·), a left–inverse ridit
function linvrX(·), a right–inverse ridit function rinvrX(·), and a central–inverse ridit function cinvrX(·),
from the closed interval [0, 1] to R∗. These are defined as

linvrX(q) = sup∗ ({x : x ∈ R∗ ∧RX(x) < q}) ,
rinvrX(q) = inf∗ ({x : x ∈ R∗ ∧RX(x) > q}) ,
cinvrX(q) = µ∗ [linvrX(q), rinvrX(q)] ,

(11)

where ∧ is the logical “and” operator.
Note that, for our discrete distribution with N finite mass points, the finite extended suprema and infima

of the ridit function can only be at mass points, as the ridit function is locally constant outside the mass
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points. So, for q ∈ [0, 1], linvrX(q) is the highest mass point xi such that RX(xi − δ) < q for positive δ
sufficiently small (if such a mass point exists), and otherwise is −∞. And rinvrX(q) is the lowest mass point
xi such that RX(xi + δ) > q for positive δ sufficiently small (if such a mass point exists), and otherwise is
+∞. And cinvrX(q) is the mean of the left and right inverses (if both are finite), or the finite left or right
inverse (if only one of them is finite), or −∞ (if both the left and the right inverse are −∞), or +∞ (if both
the left and the right inverse are +∞), or zero (if the left inverse is −∞ and the right inverse is +∞).

We define the 100qth quantile as cinvrX(q). Note that, if all the mass points are finite, then so are all
the quantiles, which can be either mass points or midpoints (also known as means) between 2 consecutive
mass points. Note, also, that, if we have a continuous distribution instead of a discrete distribution, then all
the 100qth quantiles reduce to the simple formula F−1X (q).

Figure 2: Inverse Bross ridit function for the variable trunk in the auto data.
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Figure 2 shows a plot of inverse Bross ridits of the trunk variable. The line is an inversion of the line
in Figure 1, with the horizontal and vertical axes interchanged. The horizontal parts of the line represent
inverse ridits which are mass points. We can see that percentiles 25, 50 and 75 are 10, 14 and 17 cubic feet,
respectively. The diamonds on the vertical parts of the line represent midpoint inverse ridits, each of which
is the midpoint between 2 mass points.

The left and right inverse ridits have other uses, apart from defining the central inverse ridit. We
frequently define confidence intervals for percentiles (and for percentile slopes, differences and ratios) by
inverting a confidence interval for a mean ridit[4]. The lower confidence interval for the percentile is the left
inverse ridit of the lower confidence limit for the mean ridit, and the right confidence limit for the percentile
is the right inverse of the upper confidence limit for the mean ridit. These left and right inverse ridits can
be infinite.

And inverse ridits can also be defined for Brockett–Levene ridits, defined on a scale from -1 to 1 instead
of on a scale from 0 to 1. These are used to define confidence intervals for percentile differences by inverting
confidence intervals for differences between mean ridits.
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