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1 Formulas

Suppose that Y has a multinomial distribution with parameters (p1, . . . , pm). (That is to say, suppose that
Pr(Y = i) = pi for an integer i such that 1 ≤ i ≤ m.) Given a sample Y1, . . . , Yn of multinomial random
variables with vector parameter (p1, . . . , pm), the maximum–likelihood (and method of moments) estimator
of pi is

p̂i = #{j : Yj = i}/n = ni/n (1)

where ni = #{j : Yj = i} is the number of sample indices j such that Yj = i. The dispersion matrix of the
p̂i is defined by

Cov[p̂i, pj ] =
{

n−1pi(1− pi), if i = j,
−n−1pipj , if i 6= j. (2)

We aim to estimate the ln pi with a view to estimating linear combinations of these logs. For each i, we have

∂

∂pi
ln pi =

1
pi

, (3)

implying that the covariance of ln p̂i and ln p̂j is given by

Cov[ln p̂i, ln p̂j ] =
1

pipj
Cov[p̂i, p̂j ] + op(n−1) =

{
n−1(1− pi)/pi + op(n−1), if i = j,
−n−1 + op(n−1), if i 6= j, (4)

where op(n−1) is a term with the feature that op(n−1)/n−1 is consistent for zero. It follows that, if
(γ1, . . . , γm) is a vector of coefficients, and we estimate the linear combination λ =

∑m
i=1 γi ln pj using

the estimator λ̂ =
∑m

i=1 γi ln p̂j , then the variance of λ̂ is expressed as

Var

[
m∑

i=1

γi ln p̂i

]
=

m∑

i=1

m∑

j=1

γiγjCov[ln p̂i, ln p̂j ]

= n−1
m∑

i=1

γ2
i (1− pi)/pi − n−1




m∑

i=1

∑

i≤j≤m, j 6=i

γiγj


 + op(n−1)

= n−1
m∑

i=1

γ2
i /pi − n−1




m∑

i=1

m∑

j=1

γiγj


 + op(n−1)

= n−1
m∑

i=1

γ2
i /pi − n−1

(
m∑

i=1

γi

)2

+ op(n−1) . (5)

In the special case where
∑m

i=1 γi = 0, this simplifies to

Var

[
m∑

i=1

γi ln p̂i

]
= n−1

m∑

i=1

γ2
i /pi + op(n−1) . (6)

It follows that a consistent standard error formula for λ̂ is given in the general case by

ŜE[λ̂] =

√√√√n−1

m∑

i=1

γ2
i /p̂i − n−1

(
m∑

i=1

γi

)2

, (7)
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and, in the special case where
∑m

i=1 γi = 0, this simplifies to

ŜE[λ̂] =

√√√√n−1

m∑

i=1

γ2
i /p̂i =

√√√√
m∑

i=1

γ2
i /ni . (8)

Confidence intervals for λ, calculated using these standard errors, are typically exponentiated to derive
confidence intervals for exp(λ), which are usually easier for non–mathematicians to understand.

In the case where there are 2 vectors of coefficients (α1, . . . , αm) and (β1, . . . , βm), and the linear com-
binations of logs are ν =

∑m
i=1 αi ln pi and ξ =

∑m
i=1 βi ln pi, then, by an argument similar to (5), their

covariance is of the form

Cov[ν, ξ] = n−1
m∑

i=1

αiβi/pi − n−1

(
m∑

i=1

αi

)(
m∑

i=1

βi

)
+ op(n−1) , (9)

and the second term is zero if either
∑m

i=1 αi or
∑m

i=1 βi is zero. This covariance can be used to derive
standard errors for transformations, or for linear combinations of linear combinations.

2 Examples

2.1 The odds ratio

Suppose that there is 1 random sample of n units, in which 2 binary variables are measured on the jth unit,
with possible values 0 and 1 and denoted Xj1 and Xj2, respectively, and common probabilities for all j

P00 = Pr{Xj1 = 0 ∧ Xj2 = 0}, P01 = Pr{Xj1 = 0 ∧ Xj2 = 1} ,

P10 = Pr{Xj1 = 1 ∧ Xj2 = 0}, P11 = Pr{Xj1 = 1 ∧ Xj2 = 1} . (10)

If we define Yj = 2X1j + X2j + 1, then the Yj are multinomial, with possible integer values 1 to 4 and
probabilities

p1 = P00, p2 = P01, p3 = P10, p4 = P11 . (11)

If the coefficients are γ0 = γ4 = 1 and γ2 = γ3 = −1, then the linear combination λ =
∑4

i=1 γi ln pi is the
familiar expression for the log of the common odds ratio, measuring the association between Xj1 and Xj2

for all j. As the coefficients sum to zero, the variance of the sample log odds ratio λ̂ =
∑4

i=1 γi ln p̂i is of the
form (6), and is given by

Var[λ̂] = n−1(1/P00 + 1/P01 + 1/P10 + 1/P11) + op(n−1) , (12)

and the sample standard error is of the form (8), and is given by the familiar formula

ŜE[λ̂] =
√

1/N00 + 1/N01 + 1/N10 + 1/N11 , (13)

where Ngh = nPgh for g and h in the set {0, 1}.

2.2 Hardy–Weinberg disequilibrium

In the genetics of diploid organisms such as humans and fruit flies, a typical 2–allele polymorphism has a
commoner allele A, a rarer allele a, and possible genotypes AA, Aa and aa, with population prevalences
PAA, PAa and Paa, respectively. If n individuals are sampled randomly from a population and genotyped,
then we can estimate sample prevalences P̂AA = NAA/n, P̂Aa = NAa/n and P̂aa = Naa/n, where NAA, NAa

and Naa are the respective sample frequencies of the 3 genotypes.
Lindley (1988) proposed a reparameterization of the 3–dimensional vector parameter (PAA, PAa, Paa) to

a 2–dimensional vector parameter (α, β), defined by

α = 1
2 ln

(
4PAAPaa

P 2
Aa

)
= ln 2 + 1

2 ln
(

PAAPaa

P 2
Aa

)
,

β = 1
2 ln

(
PAA

Paa

)
. (14)

(This is possible because of the constraint PAA + PAa + Paa = 1.) The parameter α is zero if the paternal
and maternal alleles of a randomly–sampled member of the population are statistically independent, as
they will be if their mothers and fathers selected each other at random (at least with respect to genotype).
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If α = 0, then the polymorphism is said to be in Hardy–Weinberg equilibrium. A positive value for α
indicates a systematic tendency for the maternal and paternal alleles to be the same (“inbreeding”), whereas
a negative value for α indicates a systematic tendency for the maternal and paternal alleles to be different
(“outbreeding”). The parameter β is the log of the square root of the ratio between the population prevalences
of the two homozygous genotypes AA and aa, and will be zero if the two homozygous genotypes are equally
common, and equal to the log of the ratio of the allelic frequencies of A and a, if the population is indeed in
Hardy–Weinberg equilibrium.

The parameters α− ln 2 and β are clearly linear combinations of logs of multinomial proportions. If we
denote p1 = PAA, p2 = PAa and p3 = Paa, then the index of each multinomial proportion will be one greater
than the number of copies of the rarer allele. The vector of coefficients for the linear combinations of the
ln pi will be (0.5,−1, 0.5) in the case of α− ln 2, and (0.5, 0,−0.5) in the case of β. Both of these vectors of
coefficients sum to zero. The maximum–likelihood (and method of moments) estimators of the parameters
α− ln 2 and β will be the corresponding linear combinations of the ln p̂i. By the transformation–invariance
property of maximum–likelihood estimators and the location–invariance property of moments, the estimate
of α is derived by adding ln 2 to the estimate of α− ln 2. Therefore, the estimates of α and β are

α̂ = 1
2 ln P̂AA + 1

2 ln P̂aa − ln P̂Aa + ln 2 ,

β̂ = 1
2 ln P̂AA − 1

2 ln P̂aa . (15)

The variances and covariances of these parameters are of the form (6) and (9), respectively, and variances
and covariances involving α are the same as the corresponding variances and covariances involving α− ln 2.
The variance–covariance matrix of α̂ and β̂ is therefore given by

Var[α̂] = n−1
(

1
4PAA

+ 1
4Paa

+ 1
PAa

)
+ op(n−1) ,

Var[β̂] = n−1
(

1
4PAA

+ 1
4Paa

)
+ op(n−1) ,

Cov[α̂, β̂] = n−1
(

1
4PAA

− 1
4Paa

)
+ op(n−1) . (16)

The sample standard errors of α̂ and β̂ are of form (8), as follows:

ŜE[α̂] =
√

1
4NAA

+ 1
4Naa

+ 1
NAa

,

ŜE[β̂] =
√

1
4NAA

+ 1
4Naa

. (17)

A variety of end–point transformations may be carried out on the parameters and their confidence intervals,
to make the parameters more easy for non–mathematicians to understand. In fact, the parameter α has
repeatedly been reinvented, with a variety of transformations. The parameter θ = exp(−α) was proposed
in Olson (1993) and Olson and Foley (1996) as a measure of Hardy–Weinberg disequilibrium, apparently
independently of Lindley (1988). The present author proposed the equivalent parameter H = exp(α− ln 2),
for the same purpose, at some point in the late 1990s after 1996, without knowledge of any of the aforemen-
tioned references, naming it the “geometric mean homozygote–heterozygote ratio”. It seemed strange to the
present author that most geneticists seemed to be using a chi–squared test for Hardy–Weinberg equilibrium,
and thereby discarding information about the direction of the disequilibrium. And it was a surprise to find
so few prior references in the literature to this parameter, which can easily be computed, together with its
standard error, using 1940s technology. And it was even more of a surprise to find that Lindley (1988)
had derived a standard error for α̂ by a totally different methodology, based on likelihood functions, which
leads to a much more complicated expression for the standard error than the one presented here. However,
Lindley seems to have had an ulterior motive of developing a Bayesian methodology, rather than arriving at
a confidence interval formula for frequentists to use.
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