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1 Introduction

The parameter Hedges’ g is also known as the standardized mean difference (SMD). It was advocated by
Hedges (1981)[2] as a measure of effect of a treatment, to be derived from a 2-sample comparison between
treated and untreated subjects, which can be compared, and pooled in a meta-analysis, between studies
where different outcomes are measured for the same treatment comparison. It is expected to be useful
in areas such as physiotherapy, where there may be no consensus as to how to measure the efficacy of a
treatment, and where different symptom scores are used in different studies. An example of an application
of Hedges’ g appears in Diong et al., 2016[4]. Having done a meta–analysis of Hedges’ g parameters on a
messy set of journal articles, the current author would like to share some of the formulas used with other
meta–analysts for future reference.

2 Formulas

Hedges’ g was defined by Hedges (1981)[2] as a general measure of treatment effect, valid when comparing 2
treatment groups regarding a Normally–distributed outcome that is equally variable in the 2 sub–populations
from which the treatment groups are sampled. Following Hedges, we assume that there are K studies (or
study-outcomes), each featuring 2 treatment groups, an intervention group (with index 1) and a control
group (with index 0). For each i from 1 to K, we assume that there are n0i subjects in the control group,
and n1i subjects in the intervention group, and that the outcomes measured in Study i are Y0ij for j from 1 to
n0i in the control group and Y1ij for j from 1 to n1i in the intervention group. We assume that, for each i, the
control values Y0ij are sampled from a common Normal distribution with mean µ0i and standard deviation
(SD) σ0i, and that the intervention values Y1ij are sampled from another common Normal distribution with
mean µ1i and SD σ1i.

The standard sampling estimators for µ0i and µ1i are the respective sample means,

Y 0i = n−1
0i

∑n0i

j=1 Y0ij ,

Y 1i = n−1
1i

∑n1i

j=1 Y1ij ,
(1)

and the standard sample estimators for σ0i and σ1i are the respective sample SDs,

SD0i =
√

(n0i − 1)
−1∑n0i

j=1

(
Y0ij − Y 0i

)2
,

SD1i =
√

(n1i − 1)
−1∑n1i

j=1

(
Y1ij − Y 1i

)2
. (2)

However, if we think that we can assume that the control and intervention SDs are equal in each study
(σ0i = σ1i = σi), then we can estimate each common study–specific SD σi by weighting the two squared
treatment–specific SDs to give the estimate

SDi =

√
(n0i − 1)SD

2

0i + (n1i − 1)SD
2

1i

n0i + n1i − 2
. (3)

This estimate enables us to estimate the difference between the intervention and control study mean in each
study, expressed in units of the common SD. In the ith study, this difference, in the study population at
large, is the ith population Hedges’ g, defined as

γi = (µ1i − µ0i) /σi, (4)
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and is estimated using the ith sample Hedges’ g, defined as the estimator

gi =
(
Y 1i − Y 0i

)
/SDi. (5)

For the purposes of making funnel plots or carrying out heterogeneity tests, we may use the standard–error
formula for the equal–variance t-test to define an approximate standard error for the individual gi using the
variance formula of Hedges (1981)[2]. If we assume equal variances in the intervention and control groups,
then each individual gi has the standard error

SE (gi) =

√
1

n0i
+

1

n1i
, (6)

using the standard equal–variance linear–regression theory of Seber (1977)[7]. This standard error can be
used with gi to generate a confidence interval and a P–value for γi, using the “Student” t–distribution with
n0i + n1i − 2 degrees of freedom.

In a meta-analysis, we wish to estimate the weighted mean of the γi, which is equal to the common value
if all the γi are equal. Usually, this meta–population parameter is defined as a weighted sum of the γi, using
weights wi that we hope are approximately inversely proportional to the sampling variance of the gi. (These
weights are frequently the pooled intervention and control sample numbers ni = n1i + n0i.) It is defined as

γ =

∑K
i=1 wiγi∑K
i=1 wi

. (7)

If these weights wi can be estimated using consistent estimators Wi, then the estimator for the meta–
population γ is the weighted sum

g =

∑K
i=1Wi gi∑K
i=1Wi

. (8)

In the case where the wi are the pooled ni, the Wi are also the ni. However, the wi might be inverse sampling
variances for the gi, and then the Wi may be inverse variance estimates.

2.1 The connection with Somers’ D

A possible justification for Hedges’ g is as a less robust, but more widely available, substitute for Somers’ D
(Newson, 2006)[5]. Somers’ D can be viewed as a common currency for associations, which can be compared,
and meta–analysed, between associations between variables defined on a variety of scales (Newson, 2015)[6].
In the two–sample case considered here, it measures how little overlap there is between the 2 treatment
groups (intervention and control).

If the assumption of equal variances between treatment groupss in the same study for the same outcome
is true, then the ith Hedges’ g is related to the corresponding Somers’ D using the formula

Di = 2Φ

(
γi√

2

)
− 1, (9)

where Φ(·) is the cumulative standard Normal distribution function, and Di is the Somers’ D, in the ith
study sub–population, of outcome with respect to treatment (defined as 0 for control, 1 for intervention).

In practice, of course, we cannot always estimate Somers’ D for each study in a meta-analysis, except if
we have the original data for each study. Hedges’ g has the advantage that journal articles usually provide
enough information for the user to estimate the study–treatment means µ0i and µ1i and the study–treatment
SDs σ0i and σ1i, allowing us to estimate Hedges’ g for each study, using the formula (5).

2.2 Alternative estimates for the study parameters

Usually, when we do a meta-analysis, the report from a component study provides estimates for the study–
specific µ0i, µ1i, σ0i and σ1i. In most cases, these are the corresponding Y 0i, Y 1i, SD0i and SD1i. However,
sometimes these are not available. In these cases, the meta–analyst must find substitutes.

Sometimes, instead of treatment–group means and SDs, the study reports give treatment–group means
with confidence limits. For the ith study, and for h equal to zero for the control sub–sample and 1 for

the intervention sub–sample, the lower and upper confidence limits for Y hi may be denoted Y
(lower)

hi and

Y
(upper)

hi , respectively. The estimated SD is then given by the alternative formula

SDhi =

√
nhi

(
Y

(upper)

hi − Y (lower)

hi

)
invt

(
nhi − 1, 1− 1

2α
)
− invt

(
nhi − 1, 1

2α
) . (10)
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Here, α is defined so that the confidence interval has confidence level 100(1 − α), so that α = 0.05 for a
95 percent confidence interval, and invt(a, b) is defined as the inverse cumulative Student’s t–distribution
function, with a degrees of freedom, of b, as implemented in Stata using the Stata statistical function invt()

(StataCorp, 2015)[8].
Alternatively, a report from a component study may provide confidence limits only for the difference

between intervention and control study means, and not for the study means themselves. In these cases, we

may denote the lower and upper confidence limits for the ith treated–control difference as diff
(lower)
i and

diff
(upper)
i , respectively. We may then reconstruct the standard error of the difference from the confidence

limits, using the formula

SEdiff
i =

diff
(upper)
i − diff

(lower)
i

invt
(
n0i + n1i − 2, 1− 1

2α
)
− invt

(
n0i + n1i − 2, 1

2α
) , (11)

where α and invt(·, ·) are defined as before. Assuming that the population SDs are equal in the control and
treated subpopulations for the ith study, we may then estimate the common SD σi using the formula

SDi =
SEdiff

i√
1/n0i + 1/n1i

. (12)

We can then substitute (12) into (5) to estimate the ith Hedges’ g.
Alternatively, the study may present no means, standard deviations or standard errors, but only medians

and other percentiles, or even only a median and an interpercentile range. In this case, the investigators
may have done this because the outcome does not have a perfect Normal distribution. However, the best
possible approximation to a Hedges’ g may still be to treat the median as the mean, and to estimate the SD

from the percentiles, or from the interpercentile range. For each probability q, we will denote by ξ
(q)
hi the

100qth population percentile, in treatment group h of study i, and we will denote by ξ
(q)

hi the corresponding

estimate of ξ
(q)
hi from the study report. The treatment–group mean is then estimated as the corresponding

median,

Y hi = ξ
(0.5)

hi . (13)

To estimate the SD, we will need 2 percentiles, or at least their difference. For instance, if the percentiles
given are the median, the 25th percentile, and the 75th percentile, then we usually estimate the SD using
the 25th and 75th percentiles, or even using just their difference, known as the interquartile range, which is
sometimes given in a study report without the original percentiles. We will denote by q(lower) and q(upper)

the lower and upper proportions corresponding to the reported percentiles, such that the study report has

presented percentiles 100q(lower) and 100q(upper), or just their difference. We will denote by ξ
(lower)
hi and

ξ
(upper)
hi the lower and upper population percentiles for treatment group h in study i, and denote by ξ

(lower)

hi

and ξ
(upper)

hi the corresponding sample percentiles, which were given in the report (or at least their difference
was). The population SD for treatment group h of study i is then given by the formula

σhi =
ξ

(upper)
hi − ξ(lower)

hi

Φ−1
(
q(upper)

)
− Φ−1

(
q(lower)

) , (14)

where Φ−1(·) is the inverse standard Normal cumulative distribution function, computed in Stata using the
invnormal() function[8]. This SD can therefore be estimated using the formula

SDhi =
ξ

(upper)

hi − ξ(lower)

hi

Φ−1
(
q(upper)

)
− Φ−1

(
q(lower)

) . (15)

Note that this formula depends only on the difference between the upper and lower percentiles. Therefore,
if q(lower) = 0.25 and q(upper) = 0.75, then the formula (15) requires only the interquartile range.

2.3 The positive–beneficial Hedges’ g

Sometimes, the meta–analysis is complicated by the fact that some of the study outcomes are higher if the
subject is doing well, and other study outcomes are higher if the subject is doing badly. In this case, we
need to summarize the results using a revised Hedges’ g, known as a positive–beneficial Hedges’ g, which
will be positive if subjects do better (on average) in the intervention group (as is expected to happen if the
treatment is beneficial), and negative if subjects do less well (on average) in the intervention group (as is
expected to happen if the treatment is harmful).
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To deal with this possibility, we define the study–specific beneficiality sign for the ith study (or study–
outcome) as

βi =

{
1, if higher Yhij values are better,
−1, if lower Yhij values are better.

(16)

We can then redefine the ith study–specific population Hedges’ g by modifying formula (4) as

γ∗i = βiγi, (17)

and redefine the corresponding ith study–specific sample Hedges’ g by modifying (5) as

g∗i = βigi, (18)

for which an approximate standard error, for funnel plots and heterogeneity ttests, is once again given by
the variance formula of Hedges (1981)[2].

The parameter we need to estimate, in order to summarize the benefit of intervention, is then

γ∗ =

∑K
i=1 wiγ

∗
i∑K

i=1 wi

, (19)

which we estimate using the weighted mean

g∗ =

∑K
i=1Wi g

∗
i∑K

i=1Wi

. (20)

Note that, if this method is to work as advertized, then the βi should be decided a priori, before knowing
the directions of the gi.

3 Further extensions

3.1 Clustered and weighted Huber variances

In the simplest case, all the K studies can be assumed mutually independent. However, this is not necessarily
the case. In some complicated meta–analyses, we have multiple outcomes per study, each with its own
beneficiality sign, and maybe also with its own weight, because some outcomes were measured in more
subjects than others.

In those cases, we can make the observational unit a study–outcome instead of a study, and use clustered
Huber variances to estimate the standard errors and confidence limits for estimating the parameter (19) using
the statistic (20). These clustered and weighted Huber variances use the assumption that we are sampling
studies independently from a population of studies, instead of sampling study–outcomes from a population
of study–outcomes. This method is essentially a special case of the more general meta–regression methods
recommended by Hedges et al., 2010[3].

3.2 Binary outcomes

Sometimes, the same meta–analysis can combine study–outcomes with quantitative outcomes and study–
outcomes with binary outcomes. One possible way of combining these might be to convert the Hedges’ g
estimates to a Somers’ D scale using 9, and to represent the binary–outcome comparisons as differences
between proportions, possibly signing both types of comparisons to be positive–beneficial. This possibility
is justified because a difference between proportions is a special case of Somers’ D[6]. However, we may be
presenting our meta–analysis to an audience who may be unfamiliar with Somers D and who may think that
they understand odds ratios better. And, sometimes, the studies in the meta–analysis may not even report
the proportions of positive results, or even the corresponding odds, but only an odds ratio between the two
corresponding odds.

For such eventualities, Chinn (2000)[1] developed a method for converting an odds ratio to a Hedges’ g,
assuming each binary outcome in each treatment group to be derived from a Normally–distributed latent
variable by being assigned the value of 1 if and only if the latent variable exceeds a threshold θ. This
Normally–distributed variable is known as the Normal-equivalent deviate (NED). Without loss of generality,
we can assume that the NED has a standard deviation of 1, because otherwise a standard–Normal–equivalent
deviate (SNED) can be derived by dividing the NED by its standard deviation. And, if the intervention and
control groups have the same standard deviation for the NED and differ only in the value of the threshold
SNED above which the binary outcome is 1, then the Hedges’ g that we might want to estimate is simply
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the difference between the control SNED threshold θ0 and the intervention SNED threshold θ1 (if a positive
binary outcome is thought to be beneficial), or the difference θ1 − θ0 between the intervention and control
SNED thresholds (if a positive binary outcome is thought to be harmful).

The Chinn method is based on using a second latent variable, the standard logistic–equivalent deviate
(SLED), as a proxy for the SNED. The SLED is assumed to have a standard–logistic distribution, which is
defined on the real line, and has cumulative distribution function

Λ(x) =
1

1− exp (x)
, (21)

and has mean 0 and variance π2/3. In a logistic regression model, we can fantasize that the binary outcome
is positive if and only if the SLED exceeds a standard–logistic threshold. And, if there are two different
standard–logistic thresholds for the intervention and control groups, then the difference between the con-
trol standard–logistic threshold and the intervention standard–logistic threshold is equal to the log of the
intervention/control odds ratio for a positive binary outcome. The Chinn method assumes that the SNED
is monotonically increasing in the SLED, and is given by the formula

SNED = Φ−1 [Λ (SLED)] ≈ π√
3

SLED , (22)

which Chinn argued was a good linear approximation, as the standard Normal and standard logistic distri-
butions are both bell–shaped and symmetrical around a common mode of 0. It follows that the difference
between control and intervention standard–Normal thresholds (also known as the Hedges’ g) can be approx-
imated as

γ ≈ π√
3

ln OR , (23)

where OR is the intervention/control odds ratio. So, in a meta–analysis, if the ith outcome is binary, then the
ith control–intervention Hedges’ g estimate can be derived approximately from the ith intervention/control
odds ratio using the approximation

gi ≈
π√
3

ln ÔRi , (24)

where ÔRi is the estimated intervention/control odds ratio for the ith outcome. Note that we can reverse
the sign of the Hedges g to be positive–beneficial, if we think that a positive binary outcome is a good
thing instead of a bad thing, in which case we would prefer the intervention–control threshold difference
to be negative, both on the SLED scale and on the SNED scale. And, if we think that we have a reliable
standard error for ln ÔRi, then we can use that in the meta-analysis. Otherwise, we can use clustered and
sample–size–weighted Huber variances.

If we are fortunate enough to have intervention and control odds for each study, instead of only having
the intervention/control or control/intervention odds ratio, then we can estimate the SNED threshold (θji
for Treatment j and Outcome i) directly from the corresponding SLED threshold (given by the log–odds of
a positive binary outcome), using (22). Or, even better, we can estimate the SNED threshold more directly,
using the formula

θij = Φ−1 [Oddsij/ (1 + Oddsij)] , (25)

where Oddsij is the odds of a positive outcome under Treatment i in the jth study–outcome. We can
then use the exact formula, instead of the Chinn approximate formula. The intervention–control positive–
beneficial Hedges’ g is then θ1i − θ0i (if a positive binary outcome is bad), or θ0i − θ1i (if a positive binary
outcome is good). Whitehead et al. (1999)[9] recommended essentially this method, phrasing it in terms of
a lognormal latent variable, and a standard–lognormal threshold equal to the odds, which is the exponential
of the standard–Normal threshold.
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