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Figure 1. Test statistics for 110 comparisons using 3 confounder sets 
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Figure 1 summarizes a recent analysis from the ALSPAC child cohort, which (as luck 

would have it) illustrates the issues involved in multiple comparisons particularly 

well. We measured 110 associations, corresponding to 5 maternal dietary score 

exposures combined with 22 child disease outcomes. Each of these associations was 

measured adjusting for 3 confounder sets, which we have named “None”  (the empty 

set, corresponding to an unadjusted analysis), “All” (the full set of 35 confounders), 

and “Non-causal” (all confounders except for 3, which some epidemiologists consider 

to be possibly on the causal pathway between diet and disease). The histograms show 

the distributions of the z-statistics or t-statistics, which, for samples of over 1000 such 

as ours, are expected to have a very nearly standard Normal sampling distribution, if 

the null hypothesis is true. 

 

In the frequentist scheme of things, if there are multiple comparisons and they are all 

equally a priori, then there is automatically a multiple comparisons issue. We 

addressed this issue by carrying out the Simes procedure, controlling the false 

discovery rate (FDR) at 0.05, on the 110 P-values for the 110 comparisons adjusted 

for each confounder set (separately for the 3 confounder sets). The Simes procedure 

defines a “discovery set” of comparisons, with the feature that we can be 95% 

confident that some of the corresponding null hypotheses are false, or 90% confident 

that most of the corresponding null hypotheses are false. In general, a frequentist 

multiple-test procedure extends the concept of confidence regions by defining a 

confidence region, not for a scalar parameter, and not for a vector parameter, but for a 



set-valued parameter, namely “the set of null hypotheses that are true”. Frequentist 

multiple-test procedures are discussed in Newson et al. (2003). 

 

In the unadjusted associations, the top subgraph of Figure 1 shows that the 

distribution of the test statistics is not standard Normal. The Simes procedure defined 

a critical P-value threshold of .00727273 and a discovery set of 16 associations, with 

P-values below that threshold, and test statistics forming the tails of the distribution. 

In cases such as this, we say that we are “data-mining in rich paydirt”. 

 

In the adjusted associations, the lower 2 subgraphs of Figure 1 show that, with both 

confounder sets, the distribution of the test statistics is approximately standard 

Normal. The number of “nominally significant” comparisons (P≤0.05) is 5 with both 

confounder sets, and is similar to the number that we would expect, assuming all null 

hypotheses to be true. The Simes procedure defined a much stricter critical P-value 

threshold of .00045455, and an empty discovery set, for both confounder sets. In 

cases such as these, we say that we are “data-mining in poor paydirt”. 

 

Note that the Simes procedure (unlike the Bonferroni and Sidak procedures) is NOT 

“blindly adjusting for the number of comparisons”. The Simes critical P-value 

threshold depends, not only on the number of P-values, but also on the P-values 

themselves. That is why it is much higher for 110 comparisons in rich paydirt than for 

110 comparisons in poor paydirt. With the Bonferroni and Sidak procedures, the 

critical P-value threshold invariably falls towards zero as the number of comparisons 

increases. (And, therefore, so does the power to detect a difference of a given size 

with a given sample number.) With the Simes procedure, the critical P-value 

threshold typically falls, as the number of comparisons increases, towards a minimum 

that depends on the richness of the paydirt in which we are data-mining. In rich 

paydirt, that minimum will be positive. However, in totally sterile paydirt, that 

minimum will be zero. This is because, in order to do its job, the Simes procedure 

must produce an empty discovery set in at least 95% of samples, when all null 

hypotheses are true. In the lower 2 subgraphs of Figure 1, where the discovery sets are 

empty, the Simes threshold is in fact equal to the Bonferroni threshold. This feature of 

the Simes procedure often makes epidemiologists depressed, but is a necessary 

consequence of being evidence-based, objectivist and frequentist. 

 

In the authority-based subjectivist Bayesian scheme of things (as I understand it), the 

rules are slightly different. There, the epidemiologists may impose an authority-based 

prior probability, and claim to KNOW that at least 5 percent of their hypotheses must 

be true. Under these circumstances, the role of the statisticians is not to question this, 

but to estimate which 5 percent. The epidemiologists are therefore guaranteed a 

stream of “positive” results in the long run, even if the paydirt that they are mining is 

totally sterile. Unfortunately, the authority of such epidemiologists does not always 

extend beyond the epidemiology sector, or even beyond their own Departments. 
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