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1 Introduction

Bland–Altman plots were introduced by Altman and Bland (1983)[1] and popularized by Bland and Altman
(1986)[2]. Given N bivariate data points (Ai, Bi), expressed in the same units and assumed to be two
alternative quantities used to measure the same thing (such as exam marks of the same students allocated
by Lecturers A and B), a Bland–Altman plot is derived by rotating the scatter plot of the Ai (on the vertical
axis) and the Bi (on the horizontal axis) through 45 degrees by transforming the bivariate column vectors
(Ai, Bi)

T with the rotation matrix

R =

[
1 −1
1
2

1
2

]
. (1)

Alternatively, in simpler language, it is defined by plotting the differences Ai−Bi on the vertical axis against
the means (Ai +Bi)/2 on the horizontal axis.

The Bland–Altman plot is a good graphical summary of the paired data points (Ai, Bi). However, we
might prefer also to have confidence intervals for parameters of the Bland–Altman plot, in order to be able to
make quantitative statements on how the Ai and the corresponding Bi agree and/or disagree with each other.
In Section 4.7 of van Belle (2008)[10], it is argued (following Lin (1989)[5]) that the three principal components
of disagreement are discordance (also known as ”imprecision”), bias, and scale differential. Suppose that the
(Ai, Bi) are sampled from a common bivariate distribution, with means µa and µB , standard deviations σA
and σB , and correlation coefficient ρAB . Disagreement can then be decomposed into these three components
by the formula

E[(A−B)2]

2σAσB
= (1− ρAB) +

(µA − µB)2

2σAσB
+

(σA − σB)2

2σAσB
, (2)

where the left–hand side measures general disagreement, the first term in the right–hand side measures
discordance, the second term in the right–hand side measures squared bias, and the third term in the right-
hand side measures squared scale differential.

It will be argued here that all three principal components of disagreement are better measured using
rank parameters than using regression parameters, although the regression parameters may be good proxies
for the rank parameters if the (Ai, Bi) are sampled from a bivariate Normal distribution. This is because
the rank parameters are less influenced by outlying data points, and also easier to interpret in words as
measuring the appropriate type of disagreement. The rank parameters used will be Kendall’s τa, estimated
using the methods of Newson (2006a)[6], and median differences, estimated using the methods of Newson
(2006b)[7].

1.1 Example dataset: Double marking of exam candidates

We will demonstrate the methods using an example dataset with one observation for each of 179 candidates
in a medical school statistics examination, and data on marks awarded by 2 academics, who we will call
“Lecturer A” and “Lecturer B”. Lecturer A was the more experienced of the two, and Lecturer B was
marking exams for the first time (in the course of an all-night session on heavy doses of coffee). There were
5 questions posed in the exam, of which students were asked to attempt 4. Each academic awarded each
student a total mark, equal to the sum of the student’s marks on the best 4 questions attempted. (It was
not unknown for a student to attempt all 5 questions.) 3 of the candidates did not sit the exam, leaving 176
students who could be marked. Students were finally awarded the mean of the marks awarded by the two
academics. The results are analysed using the Stata statistical software[9], particularly the add–on package
somersd[6][7], and two other add–on packages scsomersd and rcentile (Newson, 2014)[8], which depend
on somersd.

Figure 1 gives a scatter plot of the mark awarded by Lecturer A against the mark awarded by Lecturer B.
Figure 2 gives a Bland–Altman plot of the difference between the mark awarded by Lecturer A and the mark
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Figure 1: Scatter plot of marks awarded by Lecturers A and B.
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Figure 2: Bland–Altman plot of marks awarded by Lecturers A and B.
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awarded by Lecturer B against the mean of the two marks (eventually awarded to the student). The vertical–
axis reference line at zero in Figure 2 corresponds to the diagonal line of equality in Figure 1. Note that the
Bland–Altman plot is more efficient in using space, as there is no wasted space in the top left and bottom
right parts of the plot region. This allows us to view the vertical axis of the Bland–Altman plot in greater
detail. In particular, we can see that the differences are integer, instead of being continuous.

2 Discordance parameters

We assume a population of indexed individuals, with 2 scalar variables X and Y defined for each individual,
and a sampling scheme for sampling pairs of individuals (indexed as i and j) at random from that population.
Kendall’s τa of X and Y is then defined as

τ(X,Y ) = E [sign(Xi −Xj)sign(Yi − Yj)] , (3)

where E(·) denotes expectation, and sign(x) is 1 if x > 0, -1 if x < 0, and 0 if x = 0. Alternatively, if we
define the “cordance sign”

csign(xi, yi, xj , yj) = sign(xi − xj)sign(yi − yj), (4)

then we can define

τ(X,Y ) = Pr [csign(Xi, Yi, Xj , Yj) = 1]− Pr[csign(Xi, Yi, Xj , Yj) = −1] , (5)

where Pr(·) is the probability of an event. In other words, τ(X,Y ) is the difference between the probabilities
of concordance (csign(Xi, Yi, Xj , Yj) = 1) and discordance (csign(Xi, Yi, Xj , Yj) = −1).

Returning to our variables (Ai, Bi), which are usually assumed to be sampled independently and identi-
cally from a common population of indexed individuals with a common bivariate distribution, we might view
τ(A,B) as a measure of the concordance component of agreement and/or of the discordance component of
disagreement. If the indexed population is a population of students, and (Ai, Bi) is the numbers of exam
marks awarded by Lecturers A and B respectively, then τ(A,B) is the difference between the probability
that they agree and the probability that they disagree, assuming that they are given 2 different exam scripts
at random and are both asked which one is the best. Specifically, in the 176 students with total marks, the
Kendall’s τa between the Ai and the Bi is 0.708 (95% CI, 0.649 to 0.758; P = 2.6 × 10−36). So, with the
176 students in our sample, the two lecturers were 70.8 percent more likely to agree than to disagree. And,
in the population of students at large, from which these 176 students were sampled, we are 95% confident
that the two lecturers would be 64.9% to 75.8% more likely to agree than to disagree. (This confidence
interval is asymmetric because it was computed using the Normalizing hyperbolic arctangent or Fisher’s z
transformation.) And the P–value shows that, in a fantasy scenario in which the lecturers were equally likely
to agree or to disagree about pairs of students sampled randomly from the population at large, such a level
of agreement in a sample would be very rare.

Returning to Figures 1 and 2, we note that the scatter plot of Figure 1 draws attention to concor-
dance/discordance, because it has empty space in the upper left and lower right parts of the plot region,
and therefore draws attention to the fact that students with a higher Ai from Lecturer A usually also have
a higher Bi from Lecturer B. As we shall see, the Bland–Altman plot of Figure 2 draws attention to the
other two components of agreement/disagreement.

2.1 Kendall’s τa versus Pearson correlation

Statisticians are frequently heard to assert that the Pearson correlation coefficient “does not measure agree-
ment”. However, if a bivariate (X,Y ) is sampled from a bivariate Normal distribution, or from any other
bivariate distribution that can be transformed to bivariate Normal using a pair of monotonic transformations
g(X) and h(Y ) that may or may not be identity transformations, then the Pearson correlation coefficient
between the variables (transformed if necessary) is equal to

ρ[g(X), h(Y )] = sin
[π

2
τ(X,Y )

]
. (6)

(Note that we do not have to know the form of g(·) and h(·) in order for this to apply. Note, also, that this re-
lation is monotonically increasing, and invertible, over the closed interval from -1 to 1.) This relation is known
as Greiner’s relation, and is discussed in Kendall (1949)[4], where it is pointed out that it also applies to a
wide range of non–Normal bivariate distributions. Therefore, under a wide range of assumptions, the Pear-
son product–moment correlation ρ(A,B) may measure at least one component of agreement/disagreement
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between the Ai and the Bi, namely concordance/discordance. However, it does this in an indirect way, which
cannot be interpreted simply as a difference between probabilities of agreement and disagreement.

In our example dataset, the Pearson correlation between the marks awarded by the two lecturers, esti-
mated using Greiner’s relation to transform the estimate and confidence limits for Kendall’s τa, was 0.896
(95% CI, 0.852 to 0.928). This is in good agreement with the directly–estimated Pearson correlation of
0.908. Under Greiner’s relation, the Pearson correlation has a higher magnitude than the corresponding
Kendall’s τa. It is therefore important for the audience to understand the meaning of Kendall’s τa as a
difference between concordance and discordance probabilities. They should not become confused, just be-
cause they are accustomed to the higher–magnitude Pearson correlations and find the lower–magnitude
Kendall’s τa less impressive.

3 Bias parameters

The second component of disagreement is bias, which we commonly measure using a paired t–test to derive
a confidence interval for the mean of the differences Ai − Bi. A possible alternative measure of bias might
be percentile differences between the Ai and Bi. We can estimate the median (equal to the mean in a
bivariate Normal model), and also other percentiles, to show how differences between measurements on the
same subject vary within the population of subjects.

A useful Stata package for measuring percentiles is rcentile (Newson, 2014)[8], which allows adjustment
of confidence intervals for clustering and/or weighting if necessary, and also saves the confidence intervals
conveniently in a Stata matrix for the user to use. (In default, these confidence intervals for percentiles are
calculated using the Normalizing and variance–stabilizing hyperbolic arctangent or Fisher’s z transform on
the mean signs of the differences between data values and percentiles.)

Figure 3: Percentile differences between marks awarded to the same candidate by Lecturers A and B.
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In our example dataset, the percentile differences in marks awarded to the same candidate by Lecturers A
and B are plotted against percents (with increments of 12.5% or 1/8) in Figure 3. They are also tabulated
in Table 1. Note that, for most of the percentiles, the upper and/or lower 95% confidence limits are equal to
the estimate. This is a consequence of the fact that the differences are all integers, implying that percentile
differences and their confidence limits can only be integers or half-integers. However, this does not invalidate
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Table 1: Percentile differences between marks awarded to the same candidate by Lecturers A and B.
Percent Percentile (95% CI)

0 -8 (-8, -8)
12.5 -1 (-2, -1)

25 0 (-1, 1)
37.5 1 (1, 2)

50 2 (2, 3)
62.5 3 (3, 4)

75 4 (4, 4)
87.5 5 (5, 6)
100 8 (8, 8)

the confidence intervals, except in the case of Percentiles 0 and 100, which are the minimum and maximum,
respectively, and which are not covered by the Central Limit Theorem. We see that, most of the time,
Lecturer A is “Mr Nice”, who allocates a higher mark than Lecturer B to the same student. However,
Percentiles 12.5 and 25 indicate that, sometimes, Lecturer B is more generous. The paired t–test on these
data gave a mean difference of 2.04 (95% CI, 1.62 to 2.46; P = 9.3× 10−18). This tells us the positive mean
difference, but does not tell us about the minority of exceptional negative differences.

3.1 Tests and confidence limits for the mean sign

Confidence intervals for percentiles do not always come with P–values. However, in this case, the parameter
to test for a zero value is the mean sign, defined as E[sign(Ai − Bi)]. This is the parameter tested by the
sign test. It can be estimated, with confidence limits and a P–value, using the scsomersd package in Stata,
which can be downloaded from the Statistical Software Components (SSC) archive, and which requires two
other SSC packages (somersd and expgen) in order to work.

To estimate the mean sign of the difference, assuming that the difference itself is stored in a variable
named dtotmark, we type, in Stata,

scsomersd dtotmark 0, transf(z) tdist (7)

and the mean sign is displayed with confidence limits and a P–value, once again using the hyperbolic
arctangent or Fisher’s z transformation. In our data, it is 0.534 (95% CI, 0.404 to 0.643; P = 5.1× 10−11).
This means that, in our sample, Lecturer A awarded the higher mark 53.4% more often than Lecturer B
awarded the higher mark. And, in the population from which these students were sampled, the former event
would happen 40.4% to 64.3% more often than the latter event. And the P–value shows that a mean sign of
this magnitude would very rarely happen by chance, if both lecturers were equally likely to award the higher
mark.

Looking at the Bland–Altman plot of Figure 2), we get the impression that there are more data points
above the line of zero difference than below the line of zero difference. The mean sign, and the percentile
differences, support this impression.

4 Scale differential parameters

Two methods may also disagree on the scale of the differences between values. In our example dataset,
we might ask whether Lecturer A or Lecturer B awarded marks that differed more, generating a greater
difference between the better exam scripts and the worse exam scripts.

A good estimate of this tendency, using rank methods, is

τ [A−B, (A+B)/2] = τ(A−B,A+B) , (8)

which is the difference between the probabilities of concordance and discordance between the differences
and the means of two (Ai, Bi) pairs. In a Bland–Altman plot, such as Figure 2, a positive (or negative)
τa between mean and difference indicates a trend of increasing (or decreasing) differences with increasing
means. A positive τ(A − B,A + B) indicates that a random pair of Ai usually differ by more than the
corresponding pair of Bi, and a negative τ(A − B,A + B) indicates that the Ai usually differ by less than
the corresponding Bi, at least in the absolute values of the differences.
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4.1 Mathematical excursis

Our assertion that τ [A − B, (A + B)/2] measures scale differential needs to be proved mathematically.
However, the proof is long–winded and can be ignored, and taken on trust, by readers who do not like
equations, and who may prefer to move straight to the next Subsection and to see a confidence interval.

To prove our assertion, we assume that we are sampling two bivariate data points (Ai, Bi) and Aj , Bj)
independently from the same population. We define

∆A = |Ai −Aj |,
∆B = |Bi −Bj |,
γA = sign(Ai −Aj),
γB = sign(Bi −Bj),

(9)

where | · | denotes the absolute value. We note that the differences between the differences between, and
sums of, the A–values and B–values in the ith and jth bivariate pairs are given, respectively, by

(Ai −Bi)− (Aj −Bj) = γA∆A − γB∆B ,
(Ai +Bi)− (Aj +Bj) = γA∆A + γB∆B .

(10)

It follows that the τa between the differences Ah −Bh and the sums Ah +Bh is given by

τ(A−B,A+B) = E [sign(γA∆A − γB∆B)sign(γA∆A + γB∆B)] , (11)

which is the expectation of a product of two factors, and which is +1 if both factors have the same nonzero
value, −1 if both factors have different nonzero values, and zero otherwise.

When comparing the scales of variation of the Ah and of the Bh, we aim to compare the probabilities of
the events ∆A > ∆B and ∆A < ∆B , without forgetting that there is a third possible event ∆A = ∆B .

In the first possible event, in which ∆A > ∆B , we have

sign(γA∆A − γB∆B) = γA,
sign(γA∆A + γB∆B) = γA,

(12)

implying that the product of the above two factors is

sign(γA∆A − γB∆B)sign(γA∆A + γB∆B) = γ2A = 1, (13)

because γA cannot be zero if ∆A > ∆B ≥ 0.
Similarly, in the second possible event, in which ∆A < ∆B , we have

sign(γA∆A − γB∆B) = −γB ,
sign(γA∆A + γB∆B) = γB ,

(14)

implying that the product of the above two factors is

sign(γA∆A − γB∆B)sign(γA∆A + γB∆B) = −γ2B = −1, (15)

because γB cannot be zero if ∆B > ∆A ≥ 0.
In the third possible event, in which ∆A = ∆B , we have either ∆A = ∆B = 0 or ∆A = ∆B > 0. In the

first instance ∆A = ∆B = 0, we have

sign(γA∆A − γB∆B)sign(γA∆A + γB∆B) = 0× 0 = 0. (16)

And, in the second instance ∆A = ∆B > 0, the signs γA and γB must both be nonzero, and in the set
{−1, 1}. If the signs are the same, then we have γA = γB , implying that

sign(γA∆A − γB∆B) = sign [(γA − γA)∆B ] = 0. (17)

And, if the signs are different, then we have γA = −γB , implying that

sign(γA∆A + γB∆B) = sign [(γA − γA)∆B ] = 0. (18)

Therefore, if ∆A = ∆B , then, by (16), (17) and (18), we must have

sign(γA∆A − γB∆B)sign(γA∆A + γB∆B) = 0. (19)
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It follows from (13), (15) and(19) that

sign(γA∆A − γB∆B)sign(γA∆A + γB∆B) =

 1 , ∆A > ∆B ,
−1 , ∆A < ∆B ,

0 , ∆A = ∆B ,
(20)

implying that (11) can be restated as

τ(A−B,A+B) = E [sign(∆A −∆B)] = Pr(∆A > ∆B)− Pr(∆A < ∆B). (21)

In other words, τ [A−B, (A+B)/2] = τ(A−B,A+B) is the difference between two probabilities, namely the
probability that the absolute difference between two random A–values is greater than the absolute difference
between the corresponding B–values and the probability that the absolute difference between two random
A–values is less than the absolute difference between the corresponding B–values.

4.2 Mean–difference τa in the example dataset

Returning to our example dataset, we find that the Kendall’s τa between the means (Ai + Bi)/2 and the
differences Ai − Bi is 0.266 (95% CI, 0.169 to 0.358; P = 3.8 × 10−07). This means that, in our sample
of students, if we choose two students at random to be marked by Lecturer A and by Lecturer B, then
it is 26.6% more likely that the difference between the better script and the worse script will be greater
according to Lecturer A than according to Lecturer B than that this difference will be greater according to
Lecturer B than according to Lecturer A. And, in the population of students at large, we are 95% confident
that it would be 16.9% to 35.8% more likely. And the P–value indicates that this scale difference is not
likely to be generated by sampling error, in a fantasy scenario where both lecturers grade students on the
same scale. This may be because the more experienced and confident Lecturer A was more discriminating
than the less–experienced and caffeine–overloaded Lecturer B. Once again, the confidence interval and the
P–value were calculated using the hyperbolic arctangent or Fisher’s z transformation.

Looking at the Bland–Altman plot in Figure 2, we seem to see (by eye) that larger means are usually
found with larger differences. This impression is supported by the statistics.

4.3 Greiner’s relation for means and differences

The Greiner relation (6) may still apply for Kendall’s τa between the means (Ai +Bi)/2 and the differences
Ai − Bi, especially if the Ai and Bi have a bivariate Normal joint distribution, in which case so will the
Ai − Bi and (Ai + Bi)/2. In this case, the Pearson correlation between the means and the differences is
given (after some algebraic manipulation) by

ρ [A−B, (A+B)/2] = ρ(A−B,A+B) =
Var(A)−Var(B)√

[Var(A)]
2

+ [Var(B)]
2

+ 2Var(A)Var(B) [1− 2ρ(A,B)2]
,

(22)
where Var(·) denotes variance. By the Schwarz inequality, the denominator must be positive if the variances
are positive. This implies that (22) is positive, negative or zero if Var(A) − Var(B) is positive, negative or
zero, respectively. It is therefore interpretable as a measure of scale differential between the variances of the
Ai and of the Bi, at least in principle. However, it does not have an interpretation as a difference between
probabilities, as τ(A−B,A+B) does.

In our example dataset, the Pearson correlation derived by transforming τ [A − B, (A + B)/2] using
Greiner’s relation is 0.406 (95% CI, 0.263 to 0.533; P = 3.8× 10−07). This seems to imply that the marks of
Lecturer A are more variable than the marks of Lecturer B, and agrees well with the corresponding directly–
calculated Pearson correlation of 0.424. However, I cannot immediately think of any further interpretation.

5 Log–scale Bland–Altman plots for ratios and geometric means
of positive–valued measures

Sometimes, especially in the analysis of DNA microarray data, log–scale Bland–Altman plots are produced
for strictly positive–valued measures, where the ratio of measurements Ai/Bi on the vertical axis is plotted
against the geometric mean (GM) of measurements Ai and Bi (equal to

√
AiBi) on the horizontal axis, both

on a log scale (usually binary). These are often known by other names, such as “MA plots” or “RA plots”[3].
The rank parameters for these plots are defined by substituting the lnAi and lnBi in the formulas of the
previous sections, and exponentiating differences between logs to give ratios.
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Figure 4: Binary log–scale scatter plot of marks awarded by Lecturers A and B.
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Figure 5: Binary log–scale Bland–Altman plot of marks awarded by Lecturers A and B.
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For our example dataset, the binary log–scale scatter plot is given in Figure 4, and the binary log–
scale Bland–Altman plot is given in Figure 5. Note that, this time, the vertical–axis reference line of the
Bland–Altman plot is at the “null ratio” of 1, expected if both lecturers are equally generous.

The discordance parameter is identical for log–scale and linear–scale data, because τ(lnA, lnB) = τ(A,B)
for positive–valued variables A and B. So, once again, the Kendall’s τa between the marks of the 2 lecturers is
0.708 (95% CI, 0.649 to 0.758; P = 2.6×10−36). And the Pearson correlation from Greiner’s relation is once
again 0.896 (95% CI, 0.852 to 0.928; P = 2.6×10−36). This is in good agreement with the directly–estimated
Pearson correlation of the logs, which is 0.905.

The bias parameters this time are the percentiles of the ratios of marks awarded by Lecturer A and
Lecturer B. They are plotted in Figure 6 and tabulated in Table 2. Again, we see that Lecturer A is usually
(but not always) more generous than Lecturer B. The mean sign, with confidence limits and a P–value,
is this time the mean sign of the differences between the Ai/Bi ratios and 1, and is estimated using the
command

scsomersd rtotmark 1, transf(z) tdist (23)

assuming that the ratios Ai/Bi are stored in the variable rtotmark. This mean sign is, of course, identical
to the mean sign of the differences between the Ai − Bi ratios and zero, namely 0.534 (95% CI, 0.404 to
0.643; P = 5.1× 10−11). The paired t–test between the lnAi and the lnBi is this time computed to give an
exponentiated confidence interval for the GM ratio, which is 1.055 (95% CI, 1.040 to 1.069; P = 1.1×10−12).
This is in good agreement with the median ratio.

Figure 6: Percentile ratios between marks awarded to the same candidate by Lecturers A and B.
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The scale differential parameter this time is the Kendall’s τa between the Ai/Bi ratios and the geometric
means. This time, it is equal to 0.163 (95% CI, 0.054 to 0.269; P = .0038). So, if a random pair of exam
scripts is marked by Lecturer A and Lecturer B, then the ratio between the higher and lower of the 2
marks awarded by the same lecturer is 16.3% more likely to be greater when awarded by Lecturer A than
when awarded by Lecturer B than it is to be greater when awarded by Lecturer B than when awarded by
Lecturer A. And, in the population at large, the difference between the two probabilities is probably between
5.4% to 26.9%. Therefore, Lecturer A seems to be more discriminating than Lecturer B in relative terms,
as well as in absolute terms. However, the difference in relative discrimination seems to be less than the
difference in absolute discrimination, probably because Lecturer A is typically more generous at marking
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Table 2: Percentile ratios between marks awarded to the same candidate by Lecturers A and B.
Percent Percentile (95% CI)

0 0.667 (0.667, 0.667)
12.5 0.967 (0.935, 0.974)

25 1.000 (0.974, 1.029)
37.5 1.033 (1.028, 1.054)

50 1.062 (1.051, 1.081)
62.5 1.089 (1.069, 1.107)

75 1.118 (1.100, 1.133)
87.5 1.150 (1.133, 1.176)
100 1.296 (1.296, 1.296)

both scripts in a pair. The Pearson correlation between ratios and GMs estimated using Greiner’s relation is
0.254 (95% CI, 0.085 to 0.409; P = .0038). This is not in very good agreement with the directly–estimated
Pearson correlation between the log ratios and the log GMs, which is 0.433. This is probably because the
log is not really a sensible Normalizing transformation to use with these data, which seem (if anything)
to be negatively skewed, with an outlier in the bottom–left corner of Figures 4 and 5. This distribution–
sensitivity of the regression–based parameter is probably another good reason for preferring rank parameters
to regression parameters when summarizing Bland–Altman plots.
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