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1 Formulas

We consider Poisson–variance variables Yi (typically event counts), with positive means µi and variance
inflation (or deflation) factors φi, such that the variance of Yi is given by φiµi. Models with such variables
were among those considered by Wedderburn (1974)[2]. The variance inflation (or deflation) may be imagined
to be caused by clustering and/or weighting and/or adjustment for covariates. We focus on the case where
there are two such variables Y0 and Y1, having expectations µ0 and µ1, with sum µ+ = µ0 +µ1, proportions
pi = µi/µ+, and ratio R = µ1/µ0 = p1/p0 = p1/(1−p1) = odds(p1). Then we find, using Taylor polynomials,
that the variances of the logs of the Yi converge in ratio, as the µi become large, to

Var [ln(Yi)] = µ−2
i φiµi = φi/µi. (1)

If we assume an equal–dispersion model in which the variances of Y0 and Y1 have a common variance inflation
factor φ, then the variance of their log ratio, assuming independence, converges in ratio to
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It follows that, if ln(Y1/Y0) is the estimator for ln(R), then its asymptotic sampling standard error is given
by
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This formula can be useful in power calculations for ln(R), if we think we have a good prior guess for the
values of µ+ and φ. Note that the standard error formula still applies if we are testing null hypotheses other
than R = 1, as will be the case when Y0 and Y1 are event counts, associated with different exposure–time
totals having a known exposure–time ratio.

The factor (R+ 1)2/R in (3) has the feature that
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This expression is positive for R > 1, negative for R < 1, and zero for R = 1. So, for each value of φ/µ+, the
standard error of ln(R) is a smile-shaped function of R, with a minimum at R = 1. The log transformation
therefore does not stabilize variances perfectly.

1.1 Applications to power calculations

Power calculations for Poisson rate ratios fall into the general theory summarized in Newson (2004)[1]. In
that theory, the 5 quantities that may be calculated are power (γ = 1−β where β is the probability of Type
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2 error), α (the probability of Type 1 error), δ (the detectable difference between parameter values under 2
hypotheses), σ (the standard deviation of the influence function of the parameter being estimated), and n
(the necessary number of sampling units). Any one of these quantities can be calculated from the other 4
quantities. However, for our purposes, we will assume that n = 1, because the sum of several independent
count variables is a count variable, and, if the variables being summed are Poisson, then so is their sum.
So, we will assume that there is a single primary sampling unit, composed of 2 variance–inflated Poisson
variables, with a common dispersion parameter φ, measuring overdispersion or underdispersion, which might
be caused by clustering and/or sampling–probability weighting, or which might be caused by the component
count variables themselves being overdispersed or underdispersed.

We assume that we are measuring the log ratio of the population means of the 2 count variables. And
we assume that, under the null hypothesis being tested, the ratio R has the value of R0. This value may
be 1, if we are testing a null hypothesis of equal mean counts. Alternatively, R0 may be a ratio between
exposure times at risk, if we are testing a null hypothesis of equal event rates per unit time at risk. It
is important to note that, if R0 is an exposure–time ratio, then the ratio R between mean counts, under
an alternative hypothesis, will be equal to the product of 2 ratios, namely the exposure–time ratio R0 and
the ratio of event rates per unit time at risk under that alternative hypothesis. Therefore, if we are doing
power calculations for the detection of a ratio of event rates per unit exposure, then this rate ratio must be
multiplied by R0 to derive R for input into a power calculation. (Or, if the detectable ratio of mean counts
R is output from a power calculation, then R must be divided by R0 in order to derive a detectable rate
ratio per unit exposure.)

Under these assumptions, once we have defined µ+, φ, R and R0, we have n = 1, δ = ln(R/R0) =
ln(R) − ln(R0), and the standard deviation σ of the influence function is given by (3) as a function of R, φ
and µ+. The quantities n, δ and σ appear in the equations in Newson (2004)[1], together with the values of
γ and α under the appropriate scenarios. Given that n is fixed at 1, we can use these equations to derive
any one of the 4 quantities δ, σ, α and γ from the other 3. This can be done using the powercal package in
Stata, described in Newson (2004)[1], to do the power calculations for multiple scenarios, in a dataset with
1 observation per scenario. Each scenario will be defined by values of the 6 parameters γ, α, R, R0, µ+ and
φ.
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