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Abstract.

Scenarios can be defined as alternative versions of the same dataset, with the
same variables but different observations and/or values. Applied scientists fre-
quently want to predict how much good an intervention will do, by comparing
outcomes from the same model betwen different scenarios. Alternatively, they
may want to compare outcomes between different models applied to the same
scenario, as when standardizing statistics from different subpopulations to a com-
mon gender and age distribution. Standard Stata tools for scenario means and
comparisons are margins and pwcompare. A suite of packages is presented for esti-
mating scenario means and comparisons using margins, together with Normalizing
and variance–stabilizing transformations, implemented using nlcom. margprev es-
timates marginal prevalences, marglmean estimates marginal arithmetic means,
regpar estimates the difference between 2 marginal prevalences (the population
attributable risk or PAR), punaf estimates the ratio between 2 marginal arithmetic
means (the population unattributable fraction or PUF), and punafcc estimates a
marginal mean between–scenario risk or hazard ratio for case–control or survival
data, also known as a PUF. The PUF and its confidence limits are subtracted
from 1 to estimate the population attributable fraction (PAF). Formulas and ex-
amples are presented, including an example from the Global Allergy and Asthma
European Network (GA2LEN).

Keywords: st0001, margprev, marglmean, regpar, punaf, punafcc, margins, nlcom,
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1 Introduction

Applied scientists, especially in the public health sector, usually want to know how much
good they can do. In particular, they might want to estimate, from the available data,
how much reduction we would see in a disease rate, if everybody stopped smoking, or if
all children received a proposed vaccine. Alternatively, they might compare disease rates
between different subpopulations, and discover heterogeneity, and wonder whether that
heterogeneity is caused by confounding factors, such as differences in the age distribution
between different subpoopulations. After all, if Subpopulation A has a higher rate of
a particular cancer than Subpopulation B, then this might be because of something
in the environment of Subpopulation A, to which Subpopulation B is not exposed, or
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2 Attributable and unattributable risks and fractions

it might be because Subpopulation A is mostly older than Subpopulation B. If we
could eliminate the second possibility by standardizing the disease rates to a standard
age distribution, then we might have evidence for the first possibility. In both cases,
we are comparing scenarios. In the first case, we are comparing 2 different scenarios,
using data from the same sample. In the second case, we are comparing the same
scenario, using data from 2 different samples, one from Subpopulation A, and one from
Subpopulation B.

In statistics, scenarios can be defined as alternative versions of the same data matrix,
with equivalent columns (variables), but with different rows (observations). Different
scenarios have a one–to–one correspondence between the columns, so that equivalent
columns have the same variable names. However, different scenarios may or may not
have a one–to–one correspondence between equivalent rows. If we use regression meth-
ods, then we might want to estimate scenario means of an outcome variable Y , under dif-
ferent scenarios defined by specifying values for particularX–variables. TheX–variables
that vary between scenarios are known as exposures, and the other X–variables, which
are invariant between scenarios, are known as concomitant variables.

A seminal reference for scenario means and comparisons in generalized linear mod-
els (GLMs) is Lane and Nelder (1982). However, an important case is the estima-
tion of population attributable fractions after fitting a logistic regression model, which
is given, with different formulas for cohort studies and for case–control studies, by
Greenland and Drescher (1993). These formulas were implemented in Stata by Brady
(1998), who introduced the Stata Version 5 package aflogit. This package is still
downloadable using the command findit aflogit, although it does not support fac-
tor variable lists, and the Stata Version 5 code sometimes has problems with the long
variable names used in subsequent Stata versions. Another special case of a scenario
comparison is the population attributable risk (PAR), defined in Gordis (2000).

In Stata Version 11, a new command marginswas added (see [R]margins). margins
inputs a set of estimation results, and a set of X–variables, and outputs scenario means
for expressions involving predicted Y –values under one or more scenarios. These sce-
nario means are estimated with covariance matrices, so the user can calculate confi-
dence intervals for them. In Stata Version 12, the commands contrast and pwcompare

were added (see [R] contrast and [R] pwcompare), together with the pwcompare and
pwcompare() options for margins (see [R] margins, pwcompare). These can be used
to calculate confidence intervals for differences between scenario means. However, users
frequently want to estimate scenario means, and their differences and ratios, using Nor-
malizing and variance–stabilizing transformations to generate confidence limits in which
the user can have confidence. This can be done using nlcom (see [R] nlcom).

This article introduces a suite of programs, which call margins and nlcom to calcu-
late scenario prevalences and means, their differences, their ratios, and other comparison
statistics. These statistics are known as marginal means, marginal prevalences, and at-
tributable and unattributable risks and fractions. Section 2 describes the packages.
Section 3 describes the methods and formulas used. Finally, Section 4 gives practical
examples of the use of these packages.
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2 The packages margprev, marglmean, regpar, punaf and

punafcc

2.1 Syntax

margprev
[

if
] [

in
] [

weight
] [

, atspec(atspec) subpop(subspec)

predict(pred opt ) vce(vcespec) noesample force iterate(#) eform

level(#) post
]

marglmean
[

if
] [

in
] [

weight
] [

, atspec(atspec) subpop(subspec)

predict(pred opt ) vce(vcespec) noesample force iterate(#) eform

level(#) post
]

regpar
[

if
] [

in
] [

weight
] [

, atspec(atspec) atzero(atspec0)

subpop(subspec) predict(pred opt ) vce(vcespec) noesample force

iterate(#) level(#) post
]

punaf
[

if
] [

in
] [

weight
] [

, atspec(atspec) atzero(atspec0)

subpop(subspec) predict(pred opt ) vce(vcespec) noesample force

iterate(#) eform level(#) post
]

punafcc
[

if
] [

in
] [

weight
] [

, atspec(atspec) subpop(subspec)

vce(vcespec) noesample force iterate(#) eform level(#) post
]

where atspec and atspec0 are at–specifications recognized by the at() option of margins,
subspec is a subpopulation specification of the form recognized by the subpop()

option of margins, and vcespec is a variance–covariance specification of the form
recognized by margins, and must have one of the values

delta | unconditional

fweights, aweights, pweights and iweights are allowed. They are handled as by margins.

2.2 Description

The packages margprev, marglmean, regpar, punaf and punafcc are for use after the
parameters of a regression model have been estimated, using an estimation command.
They estimate a range of scenario prevalences, means and mean risk ratios, and their
between–scenario comparisons (differences and ratios). These are estimated with con-
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Table 1: List of packages with parameters estimated and transformations used.
Package Estimated parameters Transformations

margprev 1 marginal prevalence Logit
marglmean 1 marginal arithmetic mean Log
regpar 2 marginal prevalences and their differ-

ence (PAR)
Logit, Fisher’s z

punaf 2 marginal arithmetic means and their
ratio (PUF)

Log

punafcc 1 mean between–scenario risk or hazard
ratio (PUF)

Log

fidence limits, derived using Normalizing and variance–stabilizing transformations to
estimate the transformed parameter(s) and their dispersion matrix. A difference be-
tween 2 scenario prevalences is known as a population attributable risk (PAR), and a
ratio between 2 scenario arithmetic means, or a mean between–scenario risk ratio or
hazard ratio, is known as a population unattributable fraction (PUF). When a PUF is
estimated, a confidence interval is also calculated, using end–point transformation, for
the population attributable fraction (PAF), which is derived by subtracting the PUF
from 1. Table 1 lists the 5 packages, the parameters estimated, and the transformations
used.

2.3 Options

atspec(atspec) is an at–specification, allowed as a value of the at() option of margins
(see [R]margins). This at–specification must specify a single scenario (“Scenario 1”),
defined as a fantasy world in which a subset of the predictor variables in the model
are set to values, which may be different from their values in the real world. In the
case of punafcc, which is intended for use with case–control or survival data, the
at–specification is restricted, and may set variables only to values (not to statistics).
If atspec() is not specified, then its default value is atspec((asobserved) all),
implying that Scenario 1 is the baseline scenario, represented by the predictor values
actually present in the dataset currently in memory.

atzero(atspec0) is available for regpar and punaf only. It specifies an at–specification,
allowed as a value of the at() option of margins. This at–specification must specify
a single baseline scenario (“Scenario 0”), defined as an alternative fantasy world, in
which a subset of predictors in the model are set to the values specified by atspec0.
Scenario 0 will then be compared to the “Scenario 1” specified by the atspec()

option. If atzero() is not specified, then its default value is atzero((asobserved)
all), implying that Scenario 0 is the baseline scenario, represented by the predictor
values actually present in the dataset currently in memory.

subpop(subspec), predict(pred opt), vce(vcespec), noesample and force function
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as the options of the same names for margins. subpop() specifies a subpopulation,
predict() specifies a predict option, vce() specifies the formula used for calculating
the dispersion matrix of the estimated parameters, noesample specifies that the
estimated statistics will not be restricted to the current estimation sample, and
force specifies that the scenario means will still be estimated, even if there are
potential problems detectable by margins. The predict() option is not available
at present for punafcc, but it enables the use of the other 4 packages after a multiple–
equation command. For instance, after mlogit, the option predict(outcome(2))

allows scenario prevalences to be estimated and/or compared for the second value
of a multinomial outcome. (See [R] mlogit.)

iterate(#) has the same form and function as the option of the same name for nlcom
(see [R] nlcom). It specifies the number of iterations used by nlcom to find the
optimal step size to calculate the numerical derivatives of the transformed scenario
means and comparisons, with respect to the original scenario means calculated by
margins.

eform specifies that the command will display an estimate, p–value, and confidence
limits instead of the log estimate; see the help files for margprev, marglmean, punaf,
and punafcc for complete descriptions.

level(#) specifies the percentage confidence level to be used in calculating the confi-
dence intervals. If it is not specified, then it is taken from the current value of the
c–class value c(level), which is usually 95.

post specifies that the command will post in e() the estimation results for estimating
the transformed scenario means and any comparisons (differences or ratios). If post
is not specified, then any existing estimation results are left in e(). Note that
the estimation results posted are for the transformed parameters, and not for the
parameters themselves. This is done because the estimation results are intended to
define symmetric confidence intervals for the transformed parameters, which can be
back–transformed to define asymmetric confidence intervals for the untransformed
parameters, and for the PAR in the case of punaf and punafcc.

2.4 Saved results

margprev, marglmean, regpar, punaf and punafcc save the following results in r():
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Scalars
r(rank) Rank of r(V)
r(N) number of observations
r(N sub) subpopulation observations
r(N clust) number of clusters
r(N psu) number of samples PSUs, survey data only
r(N strata) number of strata, survey data only
r(df r) variance degrees of freedom, survey data only
r(N poststrata) number of post strata, survey data only
r(k margins) number of terms in marginlist

r(k by) number of subpopulations
r(k at) number of at() options (always 1 or 2)
r(level) confidence level

Macros
r(atzero) atzero() option (regpar and punaf only)
r(atspec) atspec() option

Matrices
r(cimat) matrix of asymmetric confidence intervals (not saved by marglmean)
r(b) vector of estimated transformed parameters
r(V) dispersion matrix for transformed estimated parameters

The matrix r(cimat) is not saved by marglmean. It contains asymmetric confi-
dence intervals (one per row) for the untransformed marginal prevalence in the case of
margprev, for the untransformed marginal prevalences and their untransformed differ-
ence (the PAR) in the case of regpar, and for the population attributable fraction (PAF,
equal to 1−PUF) in the case of punaf and punafcc. The matrices r(b) and r(V) con-
tain the estimate and dispersion matrix, respectively, for the transformed parameters,
as indicated in Table 1.

If post is specified, then margprev, marglmean, regpar, punaf and punafcc also
save the following results in e():
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Scalars
e(rank) Rank of e(V)
e(N) number of observations
e(N sub) subpopulation observations
e(N clust) number of clusters
e(N psu) number of samples PSUs, survey data only
e(N strata) number of strata, survey data only
e(df r) variance degrees of freedom, survey data only
e(N poststrata) number of post strata, survey data only
e(k margins) number of terms in marginlist

e(k by) number of subpopulations
e(k at) number of at() options (always 1 or 2)

Macros
e(cmd) Command name
e(predict) program used to implement predict
e(atzero) atzero() option (regpar and punaf only)
e(atspec) atspec() option
e(properties) b V

Matrices
r(cimat) matrix of asymmetric confidence intervals (not saved by marglmean)
e(b) vector of estimated transformed parameters
e(V) dispersion matrix for transformed estimated parameters

e(V srs) simple–random–sampling–without–replacement (co)variance V̂srswor , if svy

e(V srswr) simple–random–sampling–with–replacement (co)variance V̂srswr, if svy and
fpc()

e(V msp) misspecification (co)variance V̂msp, if svy and available

Functions
e(sample) marks estimation sample

3 Methods and formulas

This section is highly technical. The casual reader might like to skip it and proceed to
the Examples, and possibly return to this section for reference later.

The methods used are a combination of those in [R] margins and in [R] nlcom. We
denote by θ the vector of parameters estimated by the most recent model fit, and denote
by f(z, θ) the function of the covariate row vector z and the parameter vector θ whose
mean we want to estimate. In general, we aim to estimate a population parameter of
the form

p(θ) =
1

MR

M
∑

j=1

Rjf(Zj , θ) (1)

where Zj is the value of the covariate vector in the jth member of the population of
M observations, Rj is a binary variable identifying membership of the jth observation
in a subpopulation (0 for non–members and 1 for members), and MR is the size of the
subpopulation identified by the Rj , equal to

MR =
M
∑

j=1

Rj (2)

(Note that this population of M observations may or may not be the population from
which our data are sampled.)
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We aim to estimate p(θ) using the sample statistic

p̂ =
1

w.

N
∑

j=1

rjwjf(zj , θ̂) (3)

where N is the number of observations in the sample, zj is the vector of covariates in

the jth observation in the sample, θ̂ is the estimate of the parameter θ derived from
the sample, rj is a binary variable identifying membership of the jth observation in a
subsample corresponding to the subpopulation identified by the Rj , wj is the weight
for the jth observation in the sample, and

w. =
N
∑

j=1

rjwj (4)

is the sum of weights in the subsample. These weights are normally chosen so that (3)
is a consistent estimate of the population parameter p(θ) in (1).

3.1 Scenario means estimated

The packages margprev, marglmean, regpar, punaf and punafcc all start by estimating
one or two population scenario means of the form (1) using one or two corresponding
sample scenario means of the form (3). Scenarios are here defined as alternative versions
of the population and sample datasets, identified by alternative versions of the covariate
vectors Zj and zj , respectively. The scenarios are denoted “Scenario 1” (used by all 5
packages) and “Scenario 0” (currently used only by regpar and punaf). We will denote

by Z
(0)
j and Z

(1)
j the values of the covariate vector for the jth population observation in

Scenarios 0 and 1, respectively, and denote by z
(0)
j and z

(1)
j the values of the covariate

vector for the jth sample observation in Scenarios 0 and 1, respectively. (We will
continue to denote by Zj and zj the real–world values of the covariate vectors for the
jth population observation and for the jth sample observation, respectively. And we will

assume that there exists a mathematical function, deriving Z
(i)
j from Zj and deriving

z
(i)
j from zj , for i ∈ {0, 1}.)

Each of the packages estimates 1 or 2 scenario means p(i)(θ) of functions f (i)(z, θ),
using estimators p̂(i), for scenario indices i ∈ {0, 1}, over subpopulations defined by
subpopulation indicators Rj as in (1), using subsample indicators rj as in (3). The sub-
populations and subsamples are the same for both scenarios. Therefore, for Scenario i,
the population scenario mean of (1) becomes

p(i)(θ) =
1

MR

M
∑

j=1

Rjf
(i)(Zj , θ) (5)
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and the corresponding estimator of (3) becomes

p̂(i) =
1

w.

N
∑

j=1

rjwjf
(i)(zj , θ̂) (6)

The packages vary in the specification of the functions to be averaged and of the subpop-
ulations over which these functions are to be averaged. The subpopulation is governed
by the subpop() option, which functions as the option of the same name for margins
(see [R] margins). For a population index j from 1 to M , we will denote by Sj the
binary variable indicating membership of the jth population observation in the sub-
population specified by the subpop() option. Similarly, for a sample index j from 1 to
N , we will denote by sj the binary variable indicating membership of the jth sample
observation in the subsample specified by the subpop() option.

In the case of the packages margprev, marglmean, regpar and punaf, the right hand
sides of (5) and (6) are specified by

Rj = Sj , rj = sj , f (i)(Zj , θ) = µ(Z
(i)
j , θ), f (i)(zj , θ̂) = µ(z

(i)
j , θ̂) (7)

where µ(z, θ) specifies the conditional arithmetic mean calculated by predict for the
covariate vector z and the parameter vector θ.

In the case of the package punafcc, used for case–control and survival data, the
definitions are slightly more complicated, and depend on whether the most recent es-
timation command is stcox or some other estimation command. We will define the
truth–value T (x) of a numeric value x to be 1 if x is nonzero, 0 if x is zero, and missing
if x is missing. For a population index j from 1 to M , we will define Yj to be the failure
indicator variable d, generated by the command stset, if the most recent estimation
command is stcox, and to be the dependent variable given by the estimation result
e(depvar), if the most recent estimation command is another estimation command.
Similarly, for a sample index j from 1 to N , we will define yj to be the failure indicator
variable d, generated by the command stset, if the most recent estimation command
is stcox, and to be the dependent variable given by the estimation result e(depvar), if
the most recent estimation command is another estimation command. (See [ST] stcox
for documentation of stcox, and [ST] stset for documentation of stset.) We will also
denote by β the column vector containing the sub–vector of the parameter vector θ con-
taining the coefficients corresponding to the covariates of the z–vector, and denote by β̂
the column vector containing the corresponding sub–vector of the parameter–estimate
vector θ̂. The right hand sides of (5) and (6) are then specified by

Rj = SjT (Yj)
rj = sjT (yj)

f (i)(Zj , θ) = exp
[

(Z
(i)
j − Zj)β)

]

f (i)(zj , θ̂) = exp
[

(z
(i)
j − zj)β̂)

]

(8)

This implies that (5) is the population mean risk ratio (or hazard ratio), between Sce-
nario i and the real world, for the “sub–subpopulation” of cases (or failures) of the
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subpopulation specified by the subpop() option, and that (6) is a corresponding sample
mean risk ratio (or hazard ratio) for the “sub–subsample” of cases (or failures) of the
subsample specified by the subpop() option. A mean between–scenario ratio is a subtly
different quantity from a ratio between scenario means, although both of these quanti-
ties are known as population unattributable fractions, and can be subtracted from 1 to
give population attributable fractions.

Note that, in all the above equations, the packages margprev, marglmean, regpar
and punaf assume that predict specifies a conditional arithmetic mean, and that the
package punafcc assumes that the parameters of the model are log odds or hazard
ratios, while the truth–values of the dependent or failure variable indicate case status
or failure. It is the responsibility of the user to ensure that these assumptions are true.

Dispersion–matrix estimates for the estimated scenario means (6) are calculated
using methods depending on the vce() option, as specified in [R] margins.

3.2 Symmetric confidence intervals for transformed parameters

Having estimated the scenario means, and their sampling dispersion matrix, using
margins, we then estimate the transformed parameters, using the Normalizing and
variance–stabilizing transformations specified in Table 1. This is done using nlcom, so
we will use similar notation to [R] nlcom. We will denote by H the number of trans-
formed parameters that we want to estimate, and denote the vector of transformed
parameters by

g(θ) = [g1(θ), . . . , gH(θ)] (9)

The gh(θ) are functions of the originally–estimated parameter vector θ, and estimated

using the corresponding gh(θ̂). However, we will define them in terms of the scenario
means (5) estimated by margins. Table 2 gives a list of the transformed parame-
ters estimated by each package, identified by their formulas and their commonly–used
parameter names. The logit and log transformations are standard Normalizing and
variance–stabilizing transformations for the prevalences of binary variables and for the
arithnetic means of non–negative–valued variables and their ratios, respectively. The hy-
perbolic arctangent arctanh(), also known as Fisher’s z–transform, was recommended
by Edwardes (1995) for the general Somers’ D parameter, which is discussed extensively
in Newson (2006), and which includes as a special case the difference between 2 propor-
tions, exemplified in the scenario–comparison case by the population attributable risk
(PAR).

The nlcom command inputs the estimates and dispersion matrix for the scenario
means p(i)(θ), generated by margins, and outputs the estimates and dispersion matrix
for the gh(θ), using numerically–estimated derivatives of the transformed parameters
with respect to the scenario means. The output estimates vector and dispersion matrix
are saved in r(b) and r(V), respectively. If the user specifies the post option, then these
matrices are also saved in e(b) and e(V), respectively. In either case, the matrices can
be used in the same way to compute symmetric confidence intervals for the transformed
parameters.



Roger B. Newson 11

Table 2: Transformed parameters expressed as functions of scenario means.
Package Parameter formulas Parameter names

margprev g1(θ) = logit[ p(1)(θ) ] Logit prevalence
marglmean g1(θ) = log[ p(1)(θ) ] Log arithmetic mean

regpar g1(θ) = logit[ p(0)(θ) ] Logit prevalence
g2(θ) = logit[ p(1)(θ) ] Logit prevalence

g3(θ) = arctanh[ p(0)(θ) − p(1)(θ) ] z–transformed PAR

punaf g1(θ) = log[ p(0)(θ) ] Log arithmetic mean
g2(θ) = log[ p(1)(θ) ] Log arithmetic mean

g3(θ) = log[ p(1)(θ) / p(0)(θ) ] Log PUF
punafcc g1(θ) = log[ p(1)(θ) ] Log PUF

Table 3: Untransformed parameters expressed as functions of transformed parameters.
Package Parameter formulas Parameter names

margprev c1(θ) = invlogit[ g1(θ) ] Scenario 1 prevalence
regpar c1(θ) = invlogit[ g1(θ) ] Scenario 0 prevalence

c2(θ) = invlogit[ g2(θ) ] Scenario 1 prevalence
c3(θ) = tanh[ g3(θ) ] PAR

punaf c1(θ) = 1 − exp[ g3(θ) ] PAF (cohort or cross–sectional)
punafcc c1(θ) = 1 − exp[ g1(θ) ] PAF (case–control or survival)

3.3 Asymmetric confidence intervals for untransformed parameters

Usually, the user really wanted to see confidence intervals for arithmetic means and their
ratios, or for prevalences and their differences, instead of seeing confidence intervals for
the transformed parameters of Table 2. In the case of the logged parameters estimated
by marglmean, punaf and punafcc, the eform option allows the user to view the un-
transformed parameters and their confidence limits. However, in the case of margprev,
the eform option displays the odds and not the prevalence, and the eform option is
not available for regpar. Moreover, even in the case of the logged parameters of punaf
and punafcc, the user usually really wanted to estimate the population attributable
fraction (PAF), instead of the population unattributable fraction (PUF). To cater for
these cases, the packages of the punaf suite (except for marglmean) also output a matrix
of confidence intervals for the untransformed parameters of interest. This confidence
interval matrix is stored in r(cimat), and is also automatically listed in the output.
For each package, it has one row for each of K parameters ck(θ), for k ∈ {1 . . .K},
and 3 columns, containing the estimates, lower confidence limits and upper confidence
limits, respectively, of these parameters. The confidence intervals in this matrix are
asymmetric.

Table 3 lists the parameters whose asymmetric confidence intervals are listed and
saved in the confidence interval matrix by the 4 packages that produce such a matrix.
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In each case, the package computes a confidence interval for the transformed parameter
gh(θ), with estimates and lower and upper confidence limits corresponding to the confi-
dence level specified by the level() option, which defaults to level(95). The estimate,
lower confidence limit and upper confidence limit for the untransformed parameter ck(θ)
are then derived by transforming the estimate, lower confidence limit and upper confi-
dence limit, respectively, for the transformed parameter (in the case of margprev and
regpar), or by transforming the estimate, upper confidence limit and lower confidence
limit, respectively, for the transformed parameter (in the case of punaf and punafcc).

4 Examples

4.1 Scenario comparisons in the lbw data using regpar

The lbw dataset was discussed by Hosmer Jr. et al. (1988) and is distributed by Stata
Press. It has one observation for each of a sample of 189 pregnancies, and data on the
birth weight of the baby, and on a list of predictive variables. The most interesting of
these variables is probably the mother’s smoking status during pregnancy, coded as the
binary variable smoke, which is equal to 1 if the mother smoked during pregnancy and
0 otherwise We will estimate scenario comparisons from a logistic regression model to
predict the binary variable low, indicating that the baby’s birthweight was below 2500
grams.

After loading the lbw data, we fit a logistic model of low with respect to the exposure
factor smoke and the confounding factor race (1 for “white”, 2 for “black”, or 3 for
“other”):

. logit low i.race i.smoke, or vce(robust)

Iteration 0: log pseudolikelihood = -117.336
Iteration 1: log pseudolikelihood = -110.10441
Iteration 2: log pseudolikelihood = -109.98749
Iteration 3: log pseudolikelihood = -109.98736
Iteration 4: log pseudolikelihood = -109.98736

Logistic regression Number of obs = 189
Wald chi2(3) = 14.30
Prob > chi2 = 0.0025

Log pseudolikelihood = -109.98736 Pseudo R2 = 0.0626

Robust
low Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

race
2 2.956742 1.420439 2.26 0.024 1.153162 7.581175
3 3.030001 1.187272 2.83 0.005 1.405753 6.530954

1.smoke 3.052631 1.10296 3.09 0.002 1.503568 6.197631
_cons .1587319 .0515235 -5.67 0.000 .0840173 .2998882

We see that maternal smoking trebles the odds of low birth weight, and that having a
mother of either of the two non–white maternal races has a similar effect on the odds.
However, few of the public really understand odds ratios. They might understand more
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easily the difference that might result, if all mothers quit smoking before pregnancy,
but their racial mix remained the same as in the real world. The regpar package can
estimate this difference, using the saved estimation results:

. regpar, at(smoke=0)
Scenario 0: (asobserved) _all
Scenario 1: smoke=0
Symmetric confidence intervals for the logit proportions
under Scenario 0 and Scenario 1
and for the z-transformed population attributable risk (PAR)
Total number of observations used: 189

Coef. Std. Err. z P>|z| [95% Conf. Interval]

Scenario_0 -.789997 .1519305 -5.20 0.000 -1.087775 -.4922187
Scenario_1 -1.215955 .2051031 -5.93 0.000 -1.61795 -.8139606

PAR .0837153 .0266196 3.14 0.002 .0315419 .1358887

Asymmetric 95% CIs for the untransformed proportions
under Scenario 0 and Scenario 1
and for the untransformed population attributable risk (PAR)

Estimate Minimum Maximum
Scenario_0 .31216931 .25203743 .37937104
Scenario_1 .22864901 .16548776 .30704715

PAR .08352031 .03153146 .13505843

regpar starts its output by specifying Scenarios 0 and 1, in the language of the at()

option of margins. Scenario 0 is (asobserved) all, implying that all covariates and
factors are as observed in our real–world sample. Scenario 1 is smoke=0, implying that
no mothers smoke, but (by default) the factor race is distributed as in our real–world
sample. regpar then displays the logit proportions with low birth rate under Scenarios 0
and 1, and the z–transform of the difference between these proportions, known as the
population attributable risk (PAR), with their standard errors, z–statistics, P–values
and symmetric confidence limits. Finally, it displays the more comprehensible asym-
metric confidence intervals for the untransformed scenario proportions, and for their
difference. We see that, in the real world (“Scenario 0”), 31.2% of babies are expected
to have a low birth weight, but that, in the dream scenario where no mothers smoke
and their races stay the same (“Scenario 1”), only 22.9% of babies are expected to
have a low birth weight. The difference between these scenario percentages (“PAR”) is
8.4%, with confidence limits from 3.2% to 13.5%. The PAR can be interpreted as the
proportion of all babies that have low birth weight because they were born in Scenario 0,
instead of in Scenario 1.

Alternatively, we might want to communicate our message to an audience of smoking
mothers, who might want to know howmuch they could do for their children, if only they
quit smoking before pregnancy. To answer this, we might use regpar with a subpop()
option, to compute an exposed–population attributable risk for the sub–population of
smoking mothers:

. regpar, at(smoke=0) subpop(if smoke==1)
Scenario 0: (asobserved) _all
Scenario 1: smoke=0
Symmetric confidence intervals for the logit proportions
under Scenario 0 and Scenario 1
and for the z-transformed population attributable risk (PAR)
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Total number of observations used: 189

Coef. Std. Err. z P>|z| [95% Conf. Interval]

Scenario_0 -.3829923 .2373852 -1.61 0.107 -.8482587 .0822742
Scenario_1 -1.436486 .2279922 -6.30 0.000 -1.883343 -.9896299

PAR .2166422 .0707321 3.06 0.002 .0780098 .3552746

Asymmetric 95% CIs for the untransformed proportions
under Scenario 0 and Scenario 1
and for the untransformed population attributable risk (PAR)

Estimate Minimum Maximum
Scenario_0 .40540541 .29979827 .52055695
Scenario_1 .19209003 .13200536 .27098519

PAR .21331537 .07785194 .34104503

This time, the option subpop(if smoke==1) restricts the prediction to the subpopula-
tion of smoking mothers, but Scenarios 0 and 1 are defined as before. Once again, regpar
displays the incomprehensible symmetric confidence intervals for the transformed pa-
rameters, followed by the asymmetric confidence intervals for the transformed param-
eters, which are probably more easily explained to smoking mothers. We see that the
children of smoking mothers have a 40.1% prevalence of low birth weight, which might
be reduced to 19.2%, if their mothers quit smoking before pregnancy, while their racial
mix remained the same. The difference is 21.3%, with confidence limits from 7.8% to
34.1%.

Another possibility is to compare our zero–smoking dream scenario with the “night-
mare scenario” where all mothers started smoking, instead of with the intermediate
world in which we live. This is done using the atzero() option, which can be used to
reset Scenario 0, as follows:

. regpar, at(smoke=0) atzero(smoke=1)
Scenario 0: smoke=1
Scenario 1: smoke=0
Symmetric confidence intervals for the logit proportions
under Scenario 0 and Scenario 1
and for the z-transformed population attributable risk (PAR)
Total number of observations used: 189

Coef. Std. Err. z P>|z| [95% Conf. Interval]

Scenario_0 -.1697027 .2464163 -0.69 0.491 -.6526697 .3132642
Scenario_1 -1.215955 .2051031 -5.93 0.000 -1.61795 -.8139606

PAR .2331622 .0759652 3.07 0.002 .0842732 .3820512

Asymmetric 95% CIs for the untransformed proportions
under Scenario 0 and Scenario 1
and for the untransformed population attributable risk (PAR)

Estimate Minimum Maximum
Scenario_0 .45767584 .34238817 .57768182
Scenario_1 .22864901 .16548776 .30704715

PAR .22902683 .08407429 .36448745

We see that Scenario 0 is set by the atzero() option to smoke=1, while Scenario 1
is still smoke=0. Once again, regpar displays the symmetric confidence intervals for
the transformed parameters, followed by the asymmetric confidence intervals for the
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untransformed parameters. We see that, if all mothers smoked and the racial mix
stayed the same, then 45.8% of children might have low birth weight. The dream–
scenario prevalence, where no mothers smoke and the racial mix stays the same, is still
22.9%, as before. The difference in prevalence between the nightmare Scenario 0 and
the dream Scenario 1 is 22.9%, with confidence limits from 8.4% to 36.4%.

regpar might be even more useful if we had a large number of confounders, instead
of the single confounder race. In that case, we might want to reduce the potentially
infinite–dimensioned confounder space to a finite–dimensioned confounder space, by
defining a propensity score for smoking, as recommended by Rosenbaum and Rubin
(1983). Such a propensity score might be defined using a logistic regression model to
regress smoke with respect to the multiple confounders, followed by using predict to
define the smoking propensity score for each subject as the predicted probability of
smoking for that subject. We might then define a grouping variable for the propensity
score using xtile (see [D] pctile), and then use the propensity–group variable in a sec-
ond logistic regression model, with low as the outcome, and with smoking exposure and
smoking–propensity group as the predictors. A problem with using propensity scores or
groups as covariates in a logistic regression model is that the conditional odds ratio with
respect to exposure, adjusted for the propensity score, is not the same quantity as the
conditional odds ratio with respect to exposure, adjusted for the original confounders.
This is in contrast to conditional mean differences (including prevalence differences)
between exposed and unexposed subjects, where the mean difference, conditional on
the propensity score, is equal to the mean difference, conditional on the original covari-
ates. Austin et al. (2007) argue that, if we use the propensity–adjusted odds ratio to
estimate the confounder–adjusted odds ratio, then our estimate is likely to be biassed
towards the “null hypothesis” that the odds ratio is 1, leading to “underestimation of
the magnitude of the exposure effect”. This problem can arguably be solved by fitting
a logistic regression of disease with respect to exposure–propensity and exposure, and
then using regpar to define the “exposure effect” as a difference in marginal disease
prevalences between a “nightmare scenario”, where exposure–propensity stays the same
and all subjects are exposed, and a “dream scenario”, where exposure–propensity stays
the same and all subjects are unexposed.

4.2 Scenario comparisons in the lbw data using punaf

Alternatively, again, we might want to estimate the possibility for disease prevention as
a proportion of the total “disease burden” of low birth weight, instead of as a proportion
of all babies. This can be done using punaf after the same logistic regression model
as before. punaf compares scenario arithmetic means (including scenario prevalences)
using ratios, instead of differences. These ratios, known as population unattributable
fractions (PUFs), can then be subtracted from 1 to obtain population attributable
fractions (PAFs). As a simple example, we compare the smoking–free dream scenario
to the real world once again:

. punaf, at(smoke=0) eform
Scenario 0: (asobserved) _all
Scenario 1: smoke=0
Confidence intervals for the means under Scenario 0 and Scenario 1
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and for the population unattributable faction (PUF)
Total number of observations used: 189

Mean/Ratio Std. Err. z P>|z| [95% Conf. Interval]

Scenario_0 .3121693 .0326225 -11.14 0.000 .2543534 .3831271
Scenario_1 .228649 .0361738 -9.33 0.000 .1676887 .3117704

PUF .7324519 .0818807 -2.79 0.005 .5883333 .911874

95% CI for the population attributable fraction (PAF)
Estimate Minimum Maximum

PAF .2675481 .08812601 .41166675

We see that the scenarios are as in our first example with regpar, and that the scenario
means computed using punaf are the same as the untransformed scenario prevalences
using regpar. The confidence limits are slightly different, because they are computed
using the log transform instead of the logit transform. The PUF is the ratio between
the Scenario 1 mean and the Scenario 0 mean, and represents the fraction of the Sce-
nario 0 disease burden that would remain, if the babies were born in Scenario 1. (Note
that the eform option ensures that we see confidence intervals for the scenario means
and their ratio, instead of for their logs.) Finally, punaf subtracts the PUF (and its
upper and lower confidence limits) from 1 to obtain the PAF (and its lower and upper
confidence limits), and displays these in the bottom line of output. We see that 26.8%
of the “disease burden” of low birth weight might be eliminated by eliminating maternal
smoking, assuming that the racial mix stays the same, with confidence limits from 8.8%
to 41.2%.

4.3 margprev and marglmean in the lbw data

We can also estimate marginal prevalences and means without comparing them between
different scenarios. The marglprev package can estimate marginal odds, and the cor-
responding marginal prevalences, from the current estimation results. For instance, the
marginal odds and prevalence of low birthweight, in a world of smoking mothers with
the existing race distribution, could be estimated as follows:

. margprev, at(smoke==1) eform
Scenario 1: smoke==1
Confidence interval for the marginal odds
under Scenario 1
Total number of observations used: 189

Odds Std. Err. z P>|z| [95% Conf. Interval]

Scenario_1 .8439156 .2079545 -0.69 0.491 .5206539 1.367883

Asymmetric 95% CI for the untransformed marginal prevalence
under Scenario 1

Estimate Minimum Maximum
Scenario_1 .45767584 .34238817 .57768182
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This time, only Scenario 1 is specified, as there is no Scenario 0. margprev displays
first the marginal odds (not the marginal log odds, because eform has been specified),
and then a confidence interval for the marginal prevalence, which is the same as the one
calculated for the same “nightmare scenario” by regpar.

The marglmean package can estimate general marginal means for general non–
negative variables, using the log transform to calculate confidence intervals. For in-
stance, we might fit a gamma–family regression model for the non–negative variable
bwt, representing birth weight in grams, with respect to race and smoking status, as
follows, using the glm command detailed in Hardin and Hilbe (2007):

. glm bwt i.race i.smoke, family(gamma) link(log) eform vce(robust)

Iteration 0: log pseudolikelihood = -1698.0172
Iteration 1: log pseudolikelihood = -1697.9741
Iteration 2: log pseudolikelihood = -1697.9741

Generalized linear models No. of obs = 189
Optimization : ML Residual df = 185

Scale parameter = .0555296
Deviance = 12.0823464 (1/df) Deviance = .06531
Pearson = 10.27297009 (1/df) Pearson = .0555296

Variance function: V(u) = u^2 [Gamma]
Link function : g(u) = ln(u) [Log]

AIC = 18.01031
Log pseudolikelihood = -1697.974084 BIC = -957.6409

Robust
bwt exp(b) Std. Err. z P>|z| [95% Conf. Interval]

race
2 .8594198 .042562 -3.06 0.002 .7799205 .9470227
3 .863627 .0360104 -3.52 0.000 .795855 .9371702

1.smoke .8697043 .032986 -3.68 0.000 .8073975 .9368193
_cons 3332.454 97.62645 276.88 0.000 3146.499 3529.398

The parameters are a baseline arithmetic mean cons (in grams) for the babies of
non–smoking white mothers, 2 arithmetic mean ratios for the babies of black and
miscellaneous–race mothers, and an arithmetic mean ratio for the babies of smoking
mothers, compared to the babies of non–smoking mothers of the same race. We can
now use marglmean to estimate the marginal arithmetic mean, with asymmetric con-
fidence limits, that would be expected if all mothers smoked and the race distribution
remained the same:

. marglmean, at(smoke=1) eform
Scenario 1: smoke=1
Asymmetric confidence interval for the marginal mean
under Scenario 1
Total number of observations used: 189

Mean Std. Err. z P>|z| [95% Conf. Interval]

Scenario_1 2702.087 80.18231 266.28 0.000 2549.416 2863.902

We see that the mean birthweight, in this scenario, would be 2702 grams, with confidence
limits from 2549 grams to 2864 grams. We could also use punaf to estimate the ratio
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(or PUF) between this scenario mean and the scenario mean where no mothers smoked
(not shown to save space).

4.4 punafcc in case–control and survival data

The punafcc package calculates unattributable and attributable fractions for case–
control and survival data. The unattributable fraction, in this case, is a mean between–
scenario odds ratio for cases (if used after a logistic estimation), or a mean between–
scenario hazard ratio for lifetimes that terminated from the cause of interest (if used
after a Cox survival regression), instead of a ratio of scenario means. Currently, the only
scenarios that can be compared in this way are “Scenario 1” and the world in which we
sampled the data.

The downs dataset is an example of a case–control study dataset, described and used
in [ST] epitab to demonstrate the cci command. The data are from Rothman et al.
(2008), and represent a case–control study, whose outcome variable is Down’s syndrome
in infants, with maternal spermicide use as the exposure, and maternal age group as a
confounding factor. The dataset has 8 observations and 4 variables. These variables are
3 binary key variables case, exposed and age, identifying the 8 observations uniquely
and indicating case status, exposure status, and maternal age at or above 35 years, re-
spectively, and 1 integer variable pop, containing frequency weights for the combination
of case status, exposure status and age group indicated by the 3 key variables.

We start by loading the downs dataset, and fitting a full logistic regression model,
allowing age odds ratios and different exposure odds ratios for the 2 age groups:

. webuse downs, clear

. logit case i.age i.exposed i.age#i.exposed [fweight=pop], or vce(robust)

Iteration 0: log pseudolikelihood = -85.885722
Iteration 1: log pseudolikelihood = -82.752975
Iteration 2: log pseudolikelihood = -81.552365
Iteration 3: log pseudolikelihood = -81.451562
Iteration 4: log pseudolikelihood = -81.451332
Iteration 5: log pseudolikelihood = -81.451332

Logistic regression Number of obs = 1270
Wald chi2(3) = 11.64
Prob > chi2 = 0.0087

Log pseudolikelihood = -81.451332 Pseudo R2 = 0.0516

Robust
case Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

1.age 4.104651 2.775961 2.09 0.037 1.090465 15.45044
1.exposed 3.394231 2.290446 1.81 0.070 .9043692 12.73905

age#exposed
1 1 1.689141 2.389726 0.37 0.711 .105541 27.034

_cons .0084986 .002846 -14.24 0.000 .0044086 .0163831

These odds ratios are not easy to interpret at first sight, especially the interaction odds
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ratio, which is a ratio of ratios. We might find it easier to understand the fractions
of Down’s syndrome births unattributable and attributable to spermicide exposure.
These can be estimated using punafcc. It is probably a good idea to use the option
vce(unconditional), because the “covariates”exposure status and maternal age will
definitely be subject to sampling error, if we sample cases and controls and then measure
exposure status and maternal age.

. punafcc, at(exposed=0) eform vce(unconditional)
Scenario 0: (asobserved) _all
Scenario 1: exposed=0
Confidence interval for the population unattributable faction (PUF)
Total number of observations used: 1270

Ratio Std. Err. z P>|z| [95% Conf. Interval]

PUF .816142 .1181495 -1.40 0.160 .6145268 1.083903

95% CI for the population attributable fraction (PAF)
Estimate Minimum Maximum

PAF .18385804 -.08390349 .38547325

We see from the population unattributable fraction (PUF) that, in a fantasy scenario
where no mothers were exposed to spermicide, we might expect the rate of Down’s
syndrome to be 81.6% of that observed in the population from which our cases and
controls were sampled, with 95% confidence limits from 61.5% to 108.4%. This allows
the possibility that spermicide use might even be slightly protective, at least at some
maternal ages. The population attributable fraction (PAF) is computed by subtracting
the PUF from 1, and therefore has confidence limits from -8.4% to 38.5%. These limits
are wide enough to include zero, and even a small range of negative values.

Similarly, we can estimate unattributable and attributable fractions in the Stanford
heart transplant dataset heart3, which 1 observation per study subject per time inter-
val, where the time interval can be a pre–transplant interval (present for all subjects) or
a post–transplant interval (present only for subjects who received a transplant). We will
fit the Cox regression model used in [ST] stcox, where death is regressed with respect
to the quantitative covariates year (year of acceptance) and age (age in years at start),
and the binary variables posttran (indicating that the interval is post–transplant) and
surgery (indicating prior heart surgery on entry). We do not need to use stset, as
this has already been done to the dataset.

. use http://www.stata-press.com/data/r12/stan3, clear
(Heart transplant data)

. stcox age posttran surg year, vce(robust)

failure _d: died
analysis time _t: t1

id: id

Iteration 0: log pseudolikelihood = -298.31514
Iteration 1: log pseudolikelihood = -289.7344
Iteration 2: log pseudolikelihood = -289.53498
Iteration 3: log pseudolikelihood = -289.53378
Iteration 4: log pseudolikelihood = -289.53378
Refining estimates:
Iteration 0: log pseudolikelihood = -289.53378

Cox regression -- Breslow method for ties
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No. of subjects = 103 Number of obs = 172
No. of failures = 75
Time at risk = 31938.1

Wald chi2(4) = 19.68
Log pseudolikelihood = -289.53378 Prob > chi2 = 0.0006

(Std. Err. adjusted for 103 clusters in id)

Robust
_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

age 1.030224 .0148771 2.06 0.039 1.001474 1.059799
posttran .9787243 .2961736 -0.07 0.943 .5408498 1.771104
surgery .3738278 .1304912 -2.82 0.005 .1886013 .7409665

year .8873107 .0613176 -1.73 0.084 .7749139 1.01601

We see the hazard ratios associated with each binary or quantitative covariate, with
Huber (or “Robust”) confidence limits.

We might want to know the fractions of mortality attributable and unattributable
to subjects not having prior surgery. That is to say, we might want to ask how much the
death rate in the study might have decreased, if all patients had received heart surgery
prior to joining the study, and accceptance years, ages and transplant history during
the study had been the same as in the real world, and how much hazard would have
remained. This can be done using punafcc, with the option vce(unconditional) as
before, because the covariate values of lifetimes that ended in death will be subject to
sampling error, assuming that deaths do not occur by design.

. punafcc, at(surgery==1) eform vce(unconditional)
Scenario 0: (asobserved) _all
Scenario 1: surgery==1
Confidence interval for the population unattributable faction (PUF)
Total number of observations used: 172

Ratio Std. Err. z P>|z| [95% Conf. Interval]

PUF .4239216 .1317422 -2.76 0.006 .2305459 .7794955

95% CI for the population attributable fraction (PAF)
Estimate Minimum Maximum

PAF .5760784 .22050449 .76945406

We see, from the PUF, that giving all the subjects prior surgery, and changing nothing
else, might have reduced mortality to 42.4% of the level observed. When this PUF is
subtracted from 100% to get a PAF, we conclude that 57.6% of the mortality observed
is attributable to subjects not having prior surgery, with confidence limits from 22.1%
to 76.9%.

Note that the option vce(unconditional), recommended here for use with punafcc,
requires that the user must specify vce(robust) in the estimation command generating
the parameter estimates. Note, also, that the interpretation of the unattributable and
attributable fractions requires the assumption that the association between the outcome
and the exposure altered in the fantasy scenarios is indeed causal, meaning that the
outcome will change as predicted, if we intervene to change the exposure.
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4.5 Standardization as out–of–sample prediction

We can also compare outcomes between different models applied to the same scenario,
instead of between the same model applied to different scenarios. For instance, in
a multi–center study, we might fit a logistic regression model of disease with respect
to gender and age to the data from a center, and then input a dataset specifying a
standard distribution of gender and age, and use margprev to estimate the marginal
prevalence expected, if the logistic model is applied to that standard population. This
is an example of out–of–sample prediction, and the 5 packages introduced here have
a noesample option to make this possible, similar to the option of the same name for
margins.

The GA2LEN (Global Allergy and Asthma European Network) Survey is part of a
multi–regional European study on asthma and allergy in Europe. Sensitivity to a range
of allergens was measured on a sub–sample of subjects in each region, using skin prick
tests. We wanted to compare sensitivity prevalences, standardized to a common age
distribution, between 13 European regions. To do this, we fitted a logistic regression
model for sensitivity to each allergen in each region, with respect to gender and age,
and then used margprev to estimate a standardized sensitivity prevalence.

For instance, in the case of sensitivity to cat allergen in the United Kingdom, the
logistic model (fitted using sampling probability weights) was as follows:

. logit spt_cat male fquesagec [pwei=sampwt5], or

Iteration 0: log pseudolikelihood = -1030.8768
Iteration 1: log pseudolikelihood = -977.80033
Iteration 2: log pseudolikelihood = -973.41056
Iteration 3: log pseudolikelihood = -973.39866
Iteration 4: log pseudolikelihood = -973.39866

Logistic regression Number of obs = 159
Wald chi2(2) = 4.04
Prob > chi2 = 0.1328

Log pseudolikelihood = -973.39866 Pseudo R2 = 0.0558

Robust
spt_cat Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

male 2.527963 1.535882 1.53 0.127 .7684525 8.316188
fquesagec .6700974 .2209261 -1.21 0.225 .3511585 1.278712

_cons .0794547 .0300632 -6.69 0.000 .0378487 .1667967

The variables spt cat and male are binary indicators of skin–prick sensitivity to cat
allergen and male gender, and the variable fquesagec is a continuous age, centered by
subtracting 48 years and divided by 10 years to be expressed in decades over 48 years.
Therefore, the parameter cons is a baseline sensitivity odds for 48–year–old women,
the parameter male is a male–gender odds ratio, and the parameter fquesagec is a
per–decade odds ratio for age, assuming the effect of age on odds to be exponential. To
derive a standardized prevalence from these parameters, we first loaded (and listed) a
new dataset, with 1 observation per gender per age group, and data on the numbers of
individuals in that gender and age group in a European standard population:

. use estanpop, clear
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. list male agemin agemax agemean fquesagec stanpop, abbr(32) sepby(male)

male agemin agemax agemean fquesagec stanpop

1. 0 20 24 22 -2.6 7000
2. 0 25 29 27 -2.1 7000
3. 0 30 34 32 -1.6 7000
4. 0 35 39 37 -1.1 7000
5. 0 40 44 42 -.6 7000
6. 0 45 49 47 -.1 7000
7. 0 50 54 52 .4 7000
8. 0 55 59 57 .9 6000
9. 0 60 64 62 1.4 5000
10. 0 65 69 67 1.9 4000
11. 0 70 74 72 2.4 3000

12. 1 20 24 22 -2.6 7000
13. 1 25 29 27 -2.1 7000
14. 1 30 34 32 -1.6 7000
15. 1 35 39 37 -1.1 7000
16. 1 40 44 42 -.6 7000
17. 1 45 49 47 -.1 7000
18. 1 50 54 52 .4 7000
19. 1 55 59 57 .9 6000
20. 1 60 64 62 1.4 5000
21. 1 65 69 67 1.9 4000
22. 1 70 74 72 2.4 3000

In this dataset, male indicates male gender, agemin, agemax and agemean contain min-
imum, maximum and mean ages in years, fquesagec contains the mean age in decades
centered at 48 years, and stanpop contains the number of individuals with that gen-
der and age group in the European standard population. We can now estimate the
marginal odds and prevalence by applying our model to this dataset, using stanpop as
a frequency–weight variable:

. margprev [fwei=stanpop], eform noesample
Scenario 1: (asobserved) _all
Confidence interval for the marginal odds
under Scenario 1
Total number of observations used: 134000

Odds Std. Err. z P>|z| [95% Conf. Interval]

Scenario_1 .1782219 .07486 -4.11 0.000 .0782391 .4059742

Asymmetric 95% CI for the untransformed marginal prevalence
under Scenario 1

Estimate Minimum Maximum
Scenario_1 .15126346 .07256191 .2887494

We see the marginal odds, and the more comprehensible marginal prevalence of 15.1%
(95% CI, 7.3% to 28.9%). The marginal odds for this region (the UK) and the 12
others were entered into the SSC package parmhet to compute heterogeneity statistics.
The I2 statistic of Higgins and Thompson (2002) was 46.4%, with a P–value of .033,
so there seems to be heterogeneity in cat allergy prevalence between European regions,
not attributable to heterogeneity in gender and age distribution.
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