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Abstract.

We describe he use of the Bonferroni and Holm formulas as approximations for
Šidák and Holland–Copenhaver formulas when precision issues are encountered,
especially with q–values corresponding to very small p–values.
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1 Introduction

Frequentist q–values for a range of multiple–test procedures are implemented in Stata
using the package qqvalue, downloadable from SSC (Newson (2010)). The Šidák q–
value for a p–value p is given by qsid = 1− (1− p)m, where m is the number of multiple
comparisons (Šidák (1967)). It is a less conservative alternative to the Bonferroni q–
value, given by qbon = min(1,mp). However, the Šidák formula may be incorrectly
evaluated by a computer to zero when the input p–value is too small to give a result
lower than 1 when subtracted from 1, which is the case for p–values of 10−17 or less,
even in double precision. Zero q–values are logically possible as a consequence of zero
p–values, but, in this case, they may be over–liberal. This liberalism may possibly be
a problem in the future, given the current technology–driven trend of exponentially–
increasing multiple comparisons and the human–nature–driven problem of ingenious
data–dredging. We present a remedy for this problem, and discuss its use in computing
q–values and discovery sets.

2 Methods for q–values

The remedy used by the SSC packages qqvalue and parmest, is to substitute the
Bonferroni formula for the Šidák formula for such small p–values. This works because
the Bonferroni and Šidák q–values converge in ratio as p tends to zero. To prove this,
note that, for 0 ≤ p < 1,

dqbon/dp = m and dqsid/dp = m(1− p)m−1 (1)

and that the Šidák/Bonferroni ratio of these derivatives is (1 − p)m−1, which is 1 if
p = 0. By L’Hôpital’s rule, it follows that the ratio qsid/qbon also tends to 1 as p tends
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to zero.

A similar argument shows that the same problem exists with the q–values output by
the Holland–Copenhaver procedure (Holland and Copenhaver (1987)). If the m input
p–values, sorted in ascending order, are denoted pi for i from 1 to m, then the Holland–
Copenhaver procedure is defined by the formula

si = 1− (1 − pi)
m−i+1 (2)

where si is the ith s–value. (In the terminology of Newson (2010), s–values are truncated
at 1 to give r–values, which are in turn input into a step–down procedure to give the
eventual q–values.) The remedy used by qqvalue here is to substitute the s–value
formula for the procedure of Holm (1979), which is

si = (m− i+ 1)pi (3)

whenever 1 − pi is evaluated as 1. This also works because the two s–value formulas
converge in ratio as pi tends to zero. Note that the Holm procedure is derived from
the Bonferroni procedure using the same step–down method as is used to derive the
Holland–Copenhaver procedure from the Šidák procedure.

3 Methods for discovery sets

The SSC package smileplot (Newson and the ALSPAC Study Team (2003)) also im-
plements a range of multiple–test procedures procedures, using two modules multproc
and smileplot. However, instead of outputting q–values, smileplot outputs a cor-
rected critical p–value threshold, and a corresponding discovery set, defined as the
subset of input p–values at or below the corrected critical p-value. The Šidák cor-
rected critical p–value corresponding to an uncorrected critical p–value punc is given
by csid = 1 − (1 − punc)

1/m, and may be over–conservative, if wrongly evaluated to
zero. In this case, the quantity that might be wrongly computed as 1 is (1− punc)

1/m.
When this happens, smileplot substitutes the Bonferroni corrected critical p–value
cbon = punc/m. However, this is a slightly less elegant remedy in this case, because the
quantity (1 − punc)

1/m is usually evaluated to 1 because m is large, and not because
punc is small.

To study the behavior of the Bonferroni approximation for large m, we define λ =
1/m, and note that

dcbon/dλ = punc and dcsid/dλ = − ln(1− punc)(1 − punc)
λ (4)

implying (again by L’Hôpital’s rule) that, in the limit, as λ tends to 0, the Šidák/Bonferroni
ratio of the two derivatives (and therefore of the two corrected thresholds) tends to
− ln(1−punc)/punc. This quantity is not as low as 1, but is 1.150728, 1.053605, 1.025866
and 1.005034 if punc is 0.25, 0.10, 0.05 and 0.01, respectively. Therefore, the Bonferroni
approximation in this case is still slightly conservative for a very large number of mul-
tiple comparisons over a range of commonly–used uncorrected critical p–values, but is
less conservative than the value of 0 that would otherwise be computed.
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This argument is easily generalized to the Holland–Copenhaver procedure. In this
case, smileplot initially calculates a vector of m candidate critical p–value thresholds,
using the formula

ci = 1− (1− punc)
1/(m−i+1) (5)

for i from 1 to m, and selects the corrected critical p–value, corresponding to a given
uncorrected critical p–value, from these candidates, using a step–down procedure. If
the quantity (1 − punc)

1/(m−i+1) is evaluated as 1, then smileplot substitutes the
corresponding Holm critical p–value threshold

ci = punc/(m− i+ 1) (6)

which again is conservative as m − i + 1 becomes large (corresponding to the smallest
p–values from a large number of multiple comparisons), but less conservative than the
value of 0 that would otherwise be computed.

It is argued in Newson (2010) that q–values are an improvement on discovery sets,
because, given the q–values, different members of the audience can apply different input
critical p–values, and derive their own discovery sets. The technical precision issue
presented here may be one more minor reason for preferring q–values to discovery sets.
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