The Stata Journal (yyyy)

vv, Number ii, pp. 1–3

Bonferroni and Holm approximations for Šidák and Holland–Copenhaver q–values

Roger B. Newson National Heart and Lung Institute, Imperial College London London, United Kingdom r.newson@imperial.ac.uk

Abstract.

We describe he use of the Bonferroni and Holm formulas as approximations for Šidák and Holland–Copenhaver formulas when precision issues are encountered, especially with q-values corresponding to very small p-values.

Keywords: st0001, qqvalue, smileplot, multproc, multiple-test procedure, familywise error rate, Bonferroni, Šidák, Holm, Holland, Copenhaver.

1 Introduction

Frequentist q-values for a range of multiple-test procedures are implemented in Stata using the package qqvalue, downloadable from SSC (Newson (2010)). The Šidák qvalue for a p-value p is given by $q_{sid} = 1 - (1 - p)^m$, where m is the number of multiple comparisons (Šidák (1967)). It is a less conservative alternative to the Bonferroni qvalue, given by $q_{bon} = \min(1, mp)$. However, the Šidák formula may be incorrectly evaluated by a computer to zero when the input p-value is too small to give a result lower than 1 when subtracted from 1, which is the case for p-values of 10^{-17} or less, even in double precision. Zero q-values are logically possible as a consequence of zero p-values, but, in this case, they may be over-liberal. This liberalism may possibly be a problem in the future, given the current technology-driven trend of exponentiallyincreasing multiple comparisons and the human-nature-driven problem of ingenious data-dredging. We present a remedy for this problem, and discuss its use in computing q-values and discovery sets.

2 Methods for *q*-values

The remedy used by the SSC packages qqvalue and parmest, is to substitute the Bonferroni formula for the Šidák formula for such small p-values. This works because the Bonferroni and Šidák q-values converge in ratio as p tends to zero. To prove this, note that, for $0 \le p < 1$,

 $dq_{\rm bon}/dp = m$ and $dq_{\rm sid}/dp = m(1-p)^{m-1}$ (1)

and that the Šidák/Bonferroni ratio of these derivatives is $(1-p)^{m-1}$, which is 1 if p = 0. By L'Hôpital's rule, it follows that the ratio $q_{\rm sid}/q_{\rm bon}$ also tends to 1 as p tends

© yyyy StataCorp LP

st0001

Approximations for Šidák and Holland–Copenhaver q-values

to zero.

A similar argument shows that the same problem exists with the q-values output by the Holland–Copenhaver procedure (Holland and Copenhaver (1987)). If the m input p-values, sorted in ascending order, are denoted p_i for i from 1 to m, then the Holland– Copenhaver procedure is defined by the formula

$$s_i = 1 - (1 - p_i)^{m - i + 1} \tag{2}$$

where s_i is the *i*th *s*-value. (In the terminology of Newson (2010), *s*-values are truncated at 1 to give *r*-values, which are in turn input into a step-down procedure to give the eventual *q*-values.) The remedy used by **qqvalue** here is to substitute the *s*-value formula for the procedure of Holm (1979), which is

$$s_i = (m - i + 1)p_i \tag{3}$$

whenever $1 - p_i$ is evaluated as 1. This also works because the two *s*-value formulas converge in ratio as p_i tends to zero. Note that the Holm procedure is derived from the Bonferroni procedure using the same step-down method as is used to derive the Holland-Copenhaver procedure from the Šidák procedure.

3 Methods for discovery sets

The SSC package smileplot (Newson and the ALSPAC Study Team (2003)) also implements a range of multiple-test procedures procedures, using two modules multproc and smileplot. However, instead of outputting q-values, smileplot outputs a corrected critical p-value threshold, and a corresponding discovery set, defined as the subset of input p-values at or below the corrected critical p-value. The Šidák corrected critical p-value corresponding to an uncorrected critical p-value p_{unc} is given by $c_{\rm sid} = 1 - (1 - p_{\rm unc})^{1/m}$, and may be over-conservative, if wrongly evaluated to zero. In this case, the quantity that might be wrongly computed as 1 is $(1 - p_{\rm unc})^{1/m}$. When this happens, smileplot substitutes the Bonferroni corrected critical p-value $c_{\rm bon} = p_{\rm unc}/m$. However, this is a slightly less elegant remedy in this case, because the quantity $(1 - p_{\rm unc})^{1/m}$ is usually evaluated to 1 because m is large, and not because $p_{\rm unc}$ is small.

To study the behavior of the Bonferroni approximation for large m, we define $\lambda = 1/m$, and note that

$$dc_{\rm bon}/d\lambda = p_{\rm unc}$$
 and $dc_{\rm sid}/d\lambda = -\ln(1-p_{\rm unc})(1-p_{\rm unc})^{\lambda}$ (4)

implying (again by L'Hôpital's rule) that, in the limit, as λ tends to 0, the Šidák/Bonferroni ratio of the two derivatives (and therefore of the two corrected thresholds) tends to $-\ln(1-p_{\rm unc})/p_{\rm unc}$. This quantity is not as low as 1, but is 1.150728, 1.053605, 1.025866 and 1.005034 if $p_{\rm unc}$ is 0.25, 0.10, 0.05 and 0.01, respectively. Therefore, the Bonferroni approximation in this case is still slightly conservative for a very large number of multiple comparisons over a range of commonly–used uncorrected critical p-values, but is less conservative than the value of 0 that would otherwise be computed.

2

Roger B. Newson

This argument is easily generalized to the Holland–Copenhaver procedure. In this case, smileplot initially calculates a vector of m candidate critical p-value thresholds, using the formula

$$c_i = 1 - (1 - p_{\text{unc}})^{1/(m-i+1)}$$
(5)

for *i* from 1 to m, and selects the corrected critical *p*-value, corresponding to a given uncorrected critical *p*-value, from these candidates, using a step-down procedure. If the quantity $(1 - p_{\rm unc})^{1/(m-i+1)}$ is evaluated as 1, then smileplot substitutes the corresponding Holm critical *p*-value threshold

$$c_i = p_{\rm unc}/(m-i+1) \tag{6}$$

which again is conservative as m - i + 1 becomes large (corresponding to the smallest p-values from a large number of multiple comparisons), but less conservative than the value of 0 that would otherwise be computed.

It is argued in Newson (2010) that q-values are an improvement on discovery sets, because, given the q-values, different members of the audience can apply different input critical p-values, and derive their own discovery sets. The technical precision issue presented here may be one more minor reason for preferring q-values to discovery sets.

4 Acknowledgements

I would like to thank Tiago V. Pereira of the University of São Paulo, Brazil for drawing my attention to this precision issue with the Šidák and Holland–Copenhaver procedures.

5 References

- Holland, B. S., and M. D. Copenhaver. 1987. An improved sequentially rejective Bonferroni test procedure. *Biometrics* 43: 417–423.
- Holm, S. 1979. A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6: 65–70.
- Newson, R., and the ALSPAC Study Team. 2003. Multiple-test procedures and smile plots. *Stata Journal* 3(2): 109–132.
- Newson, R. B. 2010. Frequentist q-values for multiple-test procedures. Stata Journal 10(4): 568–584.
- Šidák, Z. 1967. Rectangular confidence regions for the means of multivariate normal distributions. *Journal of the American Statistical Association* 62: 626–633.

About the author

Roger B. Newson is a Lecturer in Medical Statistics at Imperial College London, UK, working principally in asthma research. He wrote the packages parmest, qqvalue and smileplot.