
sg151.y B–splines and splines parameterized by their values at reference points

Author: Roger B. Newson, King’s College London, UK. Email: roger.newson@kcl.ac.uk Date: 17 August 2022.

Abstract

A package of 3 programs is presented for generating a basis of splines in an X–variable, to be input to regression
programs to fit spline models. The first, bspline, generates a basis of Schoenberg B–splines, which avoid the
stability problems associated with plus–functions. The second, frencurv, generates a basis of reference splines,
whose parameters in the regression model are simply values of the spline at reference points on the X–axis. The
third, flexcurv, is an easy–to–use version of frencurv, which generates reference splines with sensibly–spaced knots.
frencurv and flexcurv have the additional option of generating an incomplete basis of reference splines, with the
reference spline for one reference point omitted. This incomplete basis can be completed by adding the standard
constant vector to the design matrix, and can then be used to estimate differences between values of the spline at
the remaining reference points and the value of the spline at the omitted reference point.

Key phrases

Spline; B–spline; interpolation; quadratic; cubic.

Syntax

bspline
[
newvarlist

] [
if exp

] [
in range

]
, xvar(varname)

[
power(#)

knots(numlist) noexknot generate(prefix) type(type) labfmt(format) labprefix(string)
]

frencurv
[
newvarlist

] [
if exp

] [
in range

]
, xvar(varname)

[
power(#) refpts(numlist) noexref

omit(#) base(#) knots(numlist) noexknot generate(prefix) type(type)
labfmt(format) labprefix(string)

]
flexcurv

[
newvarlist

] [
if exp

] [
in range

]
, xvar(varname)

[
power(#) refpts(numlist)

omit(#) base(#) include(numlist) krule(knot rule) generate(prefix) type(type)
labfmt(format) labprefix(string)

]
where knot rule is

regular | interpolate

Description

The bspline package contains 3 commands, bspline, frencurv and flexcurv. bspline generates a basis of
B–splines in the X–variate based on a list of knots, for use in the design matrix of a regression model. frencurv
generates a basis of reference splines, for use in the design matrix of a regression model, with the property that
the parameters fitted will be values of the spline at a list of reference points. flexcurv is an easy–to–use version
of frencurv, and generates reference splines with regularly–spaced knots, or with knots interpolated between the
reference points. frencurv and flexcurv have the additional option of generating an incomplete basis of reference
splines, which can be completed by the addition of the standard constant variable used in regression models. The
splines are either given the names in the newvarlist (if present), or (more usually) generated as a list of numbered
variables, prefixed by the generate() option. Usually (but not always), the regression command is called using the
noconst option.

Options for use with bspline and frencurv

xvar(varname) specifies the X–variable on which the splines are based.

power(#) (a non–negative integer) specifies the power (or degree) of the splines. Examples are zero for constant, 1
for linear, 2 for quadratic, 3 for cubic, 4 for quartic or 5 for quintic. If absent, zero is assumed.

knots(numlist) specifies a list of at least 2 knots, on which the splines are based. If knots() is absent, then bspline
will initialize the list to the minimum and maximum of the xvar() variable, and frencurv will create a list
of knots equal to the reference points (in the case of odd–degree splines such as a linear, cubic or quintic) or
midpoints between reference points (in the case of even–degree splines such as constant, quadratic or quartic).
flexcurv does not have the knots() option, as it automatically generates a list of knots, containing the required
number of knots “sensibly” spaced on the xvar() scale.

noexknot specifies that the original knot list is not to be extended. If noexknot is not specified, then the knot list
is extended on the left and right by a number of extra knots on each side specified by power(), spaced by the

2 Post-publication update RBN-5

distance between the first and last 2 original knots, respectively. flexcurv does not have the noexknot option,
as it specifies the knots automatically.

generate(prefix) specifies a prefix for the names of the generated splines, which (if there is no newvarlist) will be
named as prefix1. . .prefixN, where N is the number of splines.

type(type) specifies the storage type of the splines generated (float or double). If type() is given as anything else
(or not given), then it is set to float.

labfmt(format) specifies the format to be used in the variable labels for the generated splines. If absent, then it is
set to the format of the xvar() variable.

labprefix(string) specifies the prefix to be used in the variable labels for the generated splines. If absent, then it
is set to "Spline at " for flexcurv and frencurv, and to "B-spline on " for bspline.

Options for use with frencurv

refpts(numlist) specifies a list of at least 2 reference points, with the property that, if the splines are used in a
regression model, then the fitted parameters will be values of the spline at those points. If refpts() is absent,
then the list is initialized to two points, equal to the minimum and maximum of the xvar() variable. If the
omit() option is specified with flexcurv or frencurv, and the spline corresponding to the omitted reference
point is replaced with a standard constant term in the regression model, then the fitted parameters will be
relative values of the spline (differences or ratios), compared to the value of the spline at the omitted reference
point.

noexref specifies that the original reference list is not to be extended. If noexref is not specified, then the reference
list is extended on the left and right by int(power/2) extra reference points on each side, where power is
the value specified by power(), spaced by the distance between the first and last 2 original reference points,
respectively. If noexref and noexknot are both specified, then the number of knots must be equal to the number
of reference points plus power+1. flexcurv does not have the noexref option, as it automatically chooses the
knots and does not extend the reference points.

omit(#) specifies a reference point, which must be present in the refpts() list (after any extension requested by
frencurv), and whose corresponding reference spline will be omitted from the set of generated splines. If the
user specifies omit(), then the set of generated splines will not be a complete basis of the set of splines with
the specified power and knots, but can be completed by the addition of a constant variable, equal to 1 in all
observations. If the user then uses the generated splines as predictor variables for a regression command, such
as regress or glm, then the noconst option should usually not be used, and, if the omitted reference point is
in the completeness region of the basis, then the intercept parameter cons will be the value of the spline at the
omitted reference point, and the model parameters corresponding to the generated splines will be differences
between the values of the spline at the corresponding reference points and the value of the spline at the omitted
reference point. If omit() is not specified, then the generated splines form a complete basis of the set of splines
with the specified power and knots. If the user then uses the generated splines as predictor variables for a
regression command, such as regress or glm, then the noconst option should be used, and the fitted model
parameters corresponding to the generated splines will be the values of the spline at the corresponding reference
points.

base(#) is an alternative to omit() for use in Stata Versions 11 or higher. It specifies a reference point, which
must be present in the refpts() list (after any extension requested by frencurv), and whose corresponding
reference spline will be set to zero. If the user specifies base(), then the set of generated splines will not be a
complete basis of the set of splines with the specified power and knots, but can be completed by the addition of
a constant variable, equal to 1 in all observations. The generated splines can then be used in the design matrix
by an estimation command in Stata Versions 11 or higher.

Options for use with flexcurv only

Note that flexcurv uses all the options available to frencurv, except for knots(), noexknot, and noexref.

include(numlist) specifies a list of additional numbers to be included within the boundaries of the completeness
region of the spline basis, in addition to the available values of the xvar() variable and the refpts() values (if
provided). This allows the user to specify a non–default infimum and/or supremum for the completeness region
of the spline basis. If include() is not provided, then the completeness region will extend from the minimum
to the maximum of the values either available in the xvar() variable or specified in the refpts() list.

krule(knot rule) specifies a rule for generating knots, based on the reference points, which may be regular (the

Post-publication update 3

default) or interpolate. If regular is specified, then the knots are spaced regularly over the completeness
region of the spline. If interpolate is specified, then the knots are interpolated between the reference points, in
a way that produces the same knots as krule(regular) if the reference points are regularly spaced. Whichever
krule() option is specified, any extra knots to the left of the completeness region are regularly spaced with a
spacing equal to that between the first 2 knots of the completeness region, and any extra knots to the right
of the completeness region are regularly spaced with a spacing equal to that between the last 2 knots of the
completeness region. Therefore, krule(regular) specifies that all knots will be regularly spaced, whether or
not the reference points are regularly spaced, whereas krule(interpolate) specifies that the knots will be
interpolated between the reference points in a way that will cause reference splines to be definable, even if the
reference points are not regularly spaced.

Remarks

The options described above appear complicated, but imply simple defaults for most users, especially if flexcurv
is used. Advanced users and programmers are given the power to specify a comprehensive choice of non–default
splines. The splines are either given the names in the newvarlist (if present), or (more usually) generated as a list of
numbered variables, prefixed by the generate() option. (The newvarlist is intended mainly for programmers, and
allows them to store the splines in temporary variables with temporary names.)

Saved results

bspline, frencurv and flexcurv save the following results in r():
Scalars

r(xsup) upper bound of completeness region r(xinf) lower bound of completeness region

r(nincomp) number of X–values out of completeness region r(nknot) number of knots

r(nspline) number of splines r(power) power (or degree) of splines

Macros

r(knots) final list of knots r(splist) varlist of generated splines

r(labfmt) format used in spline variable labels r(labprefix) prefix used in spline variable labels

r(type) storage type of splines (float or double) r(xvar) X–variable specified by xvar() option

Matrices

r(knotv) row vector of knots

frencurv and flexcurv save all of the above results in r(), and also the following:
Scalars

r(omit) omitted reference point specified by omit() r(base) base reference point specified by base()

Macros

r(refpts) final list of reference points

Matrices

r(refv) row vector of reference points

The result r(nincomp) is the number of values of the xvar() variable outside the completeness region of
the space of splines defined by the reference splines or B–splines. The number lists r(knots) and r(refpts) are
the final lists after any left and right extensions carried out by bspline, frencurv or flexcurv, and the vectors
r(knotv) and r(refv) contain the same values in double precision (mainly for programmers). The scalars r(xinf)
and r(xsup) are knots, such that the completeness region is r(xinf) ≤ x ≤ r(xsup) for positive–degree splines and
r(xinf) ≤ x < r(xsup) for zero–degree splines.

In addition, bspline, frencurv and flexcurv save variable characteristics for the output spline basis variables.
The characteristic varname[xvar] is set by bspline, frencurv and flexcurv to be equal to the input X–variable
name set by xvar(). The characteristics varname[xinf] and varname[xsup] are set by bspline to be equal to
the infimum and supremum, respectively, of the interval of X–values for which the B–spline is non–zero. The
characteristic varname[xvalue] is set by frencurv and flexcurv to be equal to the reference point on the X–axis
corresponding to the reference spline. The characteristic varname[basestat] is set by frencurv and flexcurv to
be 1 if the reference point on the X-axis corresponding to the reference spline is equal to the base() option, and to
be 0 otherwise.

Methods and Formulas for B–splines

The principles and definitions of B–splines are given in de Boor (1978) and Ziegler (1969). Practical applications
in chemistry are described in Wold (1971 and 1974). They are used in signal processing, and are associated with a
wavelet transformation (Unser, Aldroubi and Eden, 1992).

4 Post-publication update RBN-5

Splines are a method of defining models regressing a scalar Y –variate with respect to a scalar X–variate. By
definition, a kth degree spline is defined with reference to a set of q knots s1 < s2 < . . . < sq, dividing the X–axis
into intervals of the form [si, si+1). In each of those intervals, the regression is a kth degree polynomial in X (usually
a different one in each interval), but the polynomials in any two contiguous intervals have the same jth derivatives
at the knot separating the two intervals, for j from zero to k − 1. By convention, the 0th derivative is the function
itself, so a 0th degree spline is simply a right–continuous step function, and a first–degree spline is a simple linear
interpolation of values between the knots. (By convention, the intervals [si, si+1) are closed on the left and open on
the right, but this convention only matters for splines of degree zero, which, by convention, are right–continuous
rather than left–continuous.)

Splines can be defined using plus–functions. For a power k and a knot s, the kth power plus–function at s is
defined as

Pk(x; s) =

{
(x− s)k, x ≥ s,
0, x < s.

(1)

The plus–functions are a basis for the space of splines. That is to say, for any kth degree spline S(·), with knots
s1 < s2 < . . . < sq, there exists a q–vector α such that, for any x,

S(x) =

q∑
j=1

αjPk(x; sj). (2)

It might seem that, to fit a spline in a covariate X to a Y –variate, all we have to do is to define a design matrix U ,
such that Uij = Pk(xi; sj), and fit β as a vector of regression coefficients. This is not a good idea, for two reasons.
First, there are problems with stability, as Pk(x; s) will be very large for k > 1 and x much greater than s. Second,
the β–parameters estimated will not be easy to explain in words to a non–mathematician. The first problem was
solved with the introduction of B–splines by I. J. Schoenberg in the 1960s, and these are calculated by bspline.
The second problem is solved using frencurv and flexcurv, which call bspline, and then transform the B–splines,
so that the regression parameters will simply be relative or absolute values of the spline at reference points.

The B–splines define an alternative basis of the splines with a given set of knots. Ziegler (1969) defines the
B–spline for a set of k + 2 knots s1 < s2 < ... < sk+2 as

B(x; s1, . . . , sk+2) = (k + 1)

k+2∑
j=1

 ∏
1≤h≤k+2,h ̸=j

(sh − sj)

−1

Pk(x; sj). (3)

The B–spline (3) is positive for x in the open interval (s1, sk+2), and zero for other x. If the sj are part of an
extended set of knots extending forwards to +∞ and backwards to −∞, then the set of B–splines based on sets of
k + 2 consecutive knots forms a basis of the set of all kth–degree splines defined on the full set of knots. Figure 1
shows the constant, linear, quadratic and cubic B–splines originating at zero and corresponding to unit knots.

For the purposes of bspline and frencurv, I have taken the liberty of redefining B–splines by scaling the
B(x; s1, . . . , sk+2) of (3) by a factor equal to the mean distance between two consecutive knots, to arrive at the
scale–invariant B–spline

A(x; s1, . . . , sk+2) =
sk+2 − s1
k + 1

B(x; s1, . . . , sk+2) =

{∑k+1
j=1

∏k+2
h=1 ϕjh(x), if s1 ≤ x < sk+2,

0, otherwise,

where the functions ϕjh(·) are defined by

ϕjh(x) =

1, if h = j,
(sk+2 − s1)/(sh − sj), if h = j + 1,
P1(x; sj)/(sh − sj), otherwise.

(4)

The scaled B–spline A(x; s1, . . . , sk+2) has the advantage that it is dimensionless, being a sum of products of the
dimensionless quantities ϕhj(x). That is to say, it is unaffected by the scale of units of theX–axis, and therefore has the
same values, whether x is time in millennia or time in nanoseconds. The original Ziegler B–spline B(x; s1, . . . , sk+2)
is expressed in units of x−1. Therefore, if the scaled B–spline A(x; s1, . . . , sk+2) appears in a design matrix, then its
regression coefficient is expressed in units of the Y –variate, whereas, if the original B–spline B(x; s1, . . . , sk+2) appears

Post-publication update 5

in a design matrix, then its regression coefficient is expressed in Y –units multiplied by X–units, and will be difficult
to interpret, even for a mathematician. The B–splines computed by bspline are therefore the A(x; s1, . . . , sk+2),
and users who prefer the original Ziegler B–splines must scale them by (k+1)/(sk+2 − s1). (This factor happens to
be one for splines with unit–spaced knots, such as those in Figure 1.)

0

.125

.25

.375

.5

.625

.75

.875

1

0

.125

.25

.375

.5

.625

.75

.875

1

0 1 2 3 4 0 1 2 3 4

0 (constant) 1 (linear)

2 (quadratic) 3 (cubic)

B
−

s
p
lin

e
 v

a
lu

e

X

Graphs by Power of B−spline

Figure 1. B–splines originating at zero with unit knots.

Given n data points, a Y –variate, an X–covariate, and a set of q + k + 1 consecutive knots sh < . . . < sh+q <
. . . < sh+q+k, we can regress the Y –variate with respect to a kth degree spline in X by defining a design matrix V ,
with one row for each of the n data points and one column for each of the first q knots, such that

Vij = A(xi; sh+j−1, . . . , sh+j+k). (5)

We can then regress the Y –variate with respect to the design matrix V , and compute a vector β of regression
coefficients, such that V β is the fitted spline. The parameter βj measures the contribution to the fitted spline of the
B–spline originating at the knot sh+j−1 and terminating at the knot sh+j+k. There will be no stability problems
such as we are likely to have with the original plus–function basis, as each B–spline is bounded, and localized in its
effect.

It is important to define enough knots. If the sequence of knots {sj} extends to +∞ on the right and to −∞
on the left, then the kth degree B–splines A(·; sh+j−1, . . . , sh+j+k) on sets of k+ 2 consecutive knots are a basis for
the full space of kth degree splines on the full set of knots. If S(·) is one of these splines, and [sj , sj+1) is an interval
between consecutive knots, then the values of S(x) in the interval are affected by the k + 1 B–splines originating
at the knots sj−k, . . . , sj and terminating at the knots sj+1, . . . , sj+k+1. It follows that, if we start by specifying a
sequence of knots s0 < . . . < sm, and we want to fit a spline for values of x in the interval [s0, sm), then we must also
use k extra knots s−k < . . . < s−1 to the left of s0, and k extra knots sm+1 < . . . < sm+k to the right of sm, to define
the m+ k consecutive B–splines affecting S(x) for x in the interval [s0, sm). These m+ k B–splines originate at the
knots s−k, . . . , sm−1, and terminate at the knots s1, . . . , sm+k, respectively. Any spline S(·), in the full space of kth
degree splines defined using the full set of knots, is equal to a linear combination of these m + k B–splines in the
interval [s0, sm] (in the case of positive–degree splines, which are continuous) or [s0, sm) (in the case of zero–degree
splines, which are only right–continuous). We will refer to this interval as the completeness region for splines which
are linear combinations of these m + k B–splines. These linear combinations are zero for x < s−k and x ≥ sm+k,
and “incomplete” in the outer regions (s−k, s0) and (sm, sm+k), in which the spline is “returning to zero”.

bspline and frencurv assume, in default, that the knots() option specified by the user is only intended to
span the completeness region, and that the specified knots correspond to the s0, . . . , sm. (flexcurv has no knots()

6 Post-publication update RBN-5

option, as it defines its own “sensibly–spaced” knots, which are then input to frencurv.) In default, bspline and
frencurv generate k extra knots on the left, with spacing equal to the difference between the first two knots, and
k extra knots on the right, with spacing equal to the difference between the last two knots. If the user specifies
the option noexknot, then bspline assumes that the user has specified the full set of knots, corresponding to
s−k, . . . , sm+k, and does not generate any new knots. This allows users to specify their own spacing for the outer
knots if they wish, but makes the specification of knots() simpler in the default case, because users do not have to
count the extra outer knots for themselves.

Methods and formulas for reference splines

The B–spline regression parameters are expressed in units of the Y –variable, but they are not easy to interpret.
If we have calculated the n × q matrix V of B–splines as in (5), and we also have a set of q reference X–values
r1 < r2 < . . . < rq, then we might prefer to re–parameterize the spline by its values at the rj . To do this, we first
calculate a q × q square matrix W , defined such that

Wij = A(ri; sh+j−1, . . . , sh+j+k), (6)

the value of the jth B–spline at the ith reference point. If β is the (column) q–vector of regression coefficients with
respect to the B–splines in V , and γ is the (column) q–vector of values of the spline at the reference points, then

γ = Wβ. (7)

If W is invertible, then the n–vector of values of the fitted spline at the data points is

V β = VW−1Wβ = VW−1γ = Zγ, (8)

where Z = VW−1 is a transformed n× q design matrix, whose columns contain values of a set of reference splines,
for the estimation of the reference–point spline values γ.

The choice of reference points is open to the user, and constrained mainly by the requirement that the matrix
W is invertible. This implies that each of the q B–splines must be positive for at least one of the q reference values,
and that each reference value must have at least one positive B–spline value. A natural choice of reference values
might be one in the mid–range of each B–spline, possibly the central knot for an odd–degree B–spline (such as
a linear, cubic or quintic), or the mid–point between the two central knots for an even–degree B–spline (such as
a constant, quadratic or quartic). This choice has the consequence that, for a spline of degree k, there will be
int(k/2) reference points outside the spline’s completeness region on the left, and another int(k/2) reference points
outside the spline’s completeness region on the right, where int(·) is the truncation (or “integer–part”) function.
The parameters corresponding to these “extra” reference points will not be easy to explain to non–mathematicians,
as they describe the behaviour of the spline as it returns to zero outside its completeness region. However, for a
quadratic or cubic spline, there is only one such external reference Y –value at each end of the completeness region.

By default (if the user provides no knots() option), frencurv starts with the reference points originally provided
(which default to the minimum and maximum of the xvar() variable if no refpts() option is provided), and chooses
knots “appropriately”. For an odd–degree spline (power() odd), the knots are initialized to the original reference
points themselves. For an even–degree spline (power() even), the knots are initialized to mid–points corresponding
to the original reference points. That is to say, if there are m original reference points r1 < . . . < rm, and power()
is even, then the original knots s0 < . . . < sm are initialized to

sj =

 r1 − (r2 − r1)/2, if j = 0,
(rj + rj+1)/2, if 1 ≤ j ≤ m− 1,
rm + (rm − rm−1)/2, if j = m.

(9)

frencurv assumes, by default, that the reference points initially provided are all in the completeness region,
and adds int(k/2) extra reference points to the left, spaced by the difference between the first two original reference
points, and int(k/2) extra reference points to the right, spaced by the difference between the last two original
reference points, where k is specified by the power() option. If noexref is specified, then the original refpts()
list is assumed to be the complete list, and it is the user’s responsibility to choose sensible ones. In either case, the
original knots are extended on the left and right as described above, unless noexknot is specified. (These rules seem
complicated, but lead to sensible defaults if the naive user specifies a list of reference points and naively expects

Post-publication update 7

them to be in the completeness region of the spline, while preserving the ability of advanced users to specify exactly
what they want at their own risk.)

Figure 2 shows the constant, linear, quadratic and cubic reference splines corresponding to a reference point
at 4, assuming unit reference points and default knots (equal to reference points for odd degree and inter–reference
midpoints for even degree). Note that each spline is one at its own reference point, and zero at all other reference
points. (This is always the case for a basis of reference splines, at least for reference splines corresponding to reference
points in the completeness region of the basis.) The reference splines are similar to (but not the same as) the B–spline
wavelets of Unser et al. (1992).

−.25
−.125

0
.125
.25

.375
.5

.625
.75

.875
1

−.25
−.125

0
.125
.25

.375
.5

.625
.75

.875
1

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

0 (constant) 1 (linear)

2 (quadratic) 3 (cubic)

R
e
fe

re
n
c
e
 s

p
lin

e
 v

a
lu

e

X

Graphs by Power of reference spline

Figure 2. Reference splines at 4 with unit reference points.

flexcurv uses an alternative method to define knots from reference points, which guarantees that the reference
points, the values of the X–variable specified by xvar(), and (optionally) a list of other X–values specified by the
include() option will be in the completeness region of the generated spline basis. It also guarantees that the knots
will be “sensibly” spaced, using a definition of sensibility specified by the krule() option. Suppose that there are q
reference points r1, . . . , rq provided by the user in the refpts() option. flexcurv first calculates the numbers xinf

and xsup as the minimum and maximum, respectively, of all values present in the xvar() variable, the refpts()
list or the include() list. The numbers xinf and xsup will be the infimum and the supremum, respectively, of
the completeness region of the spline basis. The number of intervals between adjacent knots in and bordering the
completeness region is then m = q − k. The original knots in and bordering the completeness region are s0, . . . , sm.

If the user specifies krule(regular) (the default), then these sj are spaced regularly, and defined by the simple
formula

sj =
j

m
xsup +

m− j

m
xinf . (10)

If the user specifies krule(interpolate), then these sj are interpolated between the reference points, using a more
complicated formula. If the spline power k is 0, we define s0 = xinf , sm = xsup, and sj = rj+1 for other j. Otherwise,
we first define, for each j from 0 to m,

σ(j) = 1 + j(q − 1)/m, π(j) = int[σ(j)], ρ(j) = σ(j)− π(j). (11)

We then define the sj as

sj =

xinf , j = 0,
xsup, j = m,
[1− ρ(j)] rπ(j) + ρ(j) rπ(j)+1, otherwise.

(12)

8 Post-publication update RBN-5

This formula ensures that the knots sj are interpolated between the reference points in a way which will be regularly
spaced, if the reference points themselves are regularly spaced from r1 = xinf to rq = xsup. However, if the reference
points are not regularly spaced, then the user can specify krule(interpolate) to ensure that the reference splines
will still be definable, which may possibly not be the case if the user specifies krule(regular) with irregularly–spaced
reference points.

flexcurv then calls frencurv to generate the reference splines, with the reference points r1, . . . , rq as the
refpts() option, and the knots s0, . . . , sm as the knots() option, with the noexref option but without the
noexknot option. This implies that, whichever krule() option is specified, any extra knots to the left of the
completeness region will be regularly spaced by the distance between the first 2 internal knots, and any extra knots
to the right of the completeness region will be regularly spaced by the distance between the last 2 internal knots.
Therefore, krule(regular) specifies that the knots inside and outside the completeness region are regularly spaced,
so that any pair of adjacent knots inside or outside the completeness region is separated by (xsup − xinf)/m X–axis
units. Both krule() options result in the generation of a basis of q reference splines, corresponding to the respective
reference points, with a completeness region xinf ≤ x ≤ xsup (for positive–degree splines) or xinf ≤ x < xsup (for
zero–degree splines). Note that, in the case of zero–degree splines, the user must specify xsup in the include() option,
as a number strictly greater than any reference points and xvar() values, because xsup is outside the completeness
region for a zero–degree spline, which is a right–continuous step function with discontinuities at its knots, which
include xsup.

If the user specifies one of the reference points as the omit() option for flexcurv or frencurv, then the
corresponding reference spline is dropped, and the basis will be incomplete. If the omitted reference point is in the
completeness region, then this incomplete basis can be completed by including a constant variable, equal to 1 in
all observations. This is because, within the completeness region of the reference spline basis, a constant variable is
equal to a linear combination of the reference splines, with all coordinates equal to the constant. Therefore, if we
drop a reference spline corresponding to a reference point in the completeness region, and substitute a variable equal
to 1 throughout the completeness region, then the resulting list of variables will be a basis of the same spline space,
with the same completeness region. However, if we then use this new basis as the design matrix in a regression model,
then the parameter corresponding to the constant variable will be the value of the spline at the omitted reference
point, and the other parameters, corresponding to the remaining reference points, will be the differences between
the values of the spline at these remaining reference points and the value of the spline at the omitted reference
point. Therefore, if the user uses flexcurv or frencurv to generate a spline basis for input to a regression model,
then the noconst option should be used if no omit() option is specified, but not if an omit() option is specified. In
this respect, the basis (or incomplete basis) of reference splines generated by flexcurv or frencurv is a continuous
version of a single–factor basis (or incomplete basis) of indicator functions generated by xi with (or without) the
noomit option.

In Stata Versions 11 or higher, the user may use the base() option for flexcurv or frencurv, instead of the
omit() option, to specify a reference point whose corresponding reference spline is set to zero. The reference spline
basis will then be an incomplete “super–basis”, augmented by a zero vector, and can be completed similarly by
adding a unit vector. This allows the user to use the “super–basis” in the design matrix of a regression model, fitted
by a Stata Version 11 estimation command, with an omitted parameter corresponding to the base reference spline.

Example

In the auto data, we can use flexcurv and regress (with the noconst option) to fit a cubic spline for miles
per gallon with respect to weight (in US pounds):

. flexcurv, xvar(weight) refpts(1760(770)4840) gen(cs) power(3)

. describe cs*
storage display value

variable name type format label variable label

cs1 float %8.4f Spline at 1,760
cs2 float %8.4f Spline at 2,530
cs3 float %8.4f Spline at 3,300
cs4 float %8.4f Spline at 4,070
cs5 float %8.4f Spline at 4,840
. regress mpg cs*, robust noconst
Linear regression Number of obs = 74

F(5, 69) = 751.86
Prob > F = 0.0000
R-squared = 0.9780
Root MSE = 3.3903

Post-publication update 9

--
| Robust

mpg | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+--

cs1 | 30.83764 1.79533 17.18 0.000 27.25606 34.41923
cs2 | 23.56232 .7657011 30.77 0.000 22.03479 25.08985
cs3 | 18.79659 .546976 34.36 0.000 17.70541 19.88778
cs4 | 15.95229 .8751852 18.23 0.000 14.20634 17.69824
cs5 | 12.15876 .6937123 17.53 0.000 10.77484 13.54268

--

We have chosen the reference points (arbitrarily) to be equally spaced from the minimum of weight (1,760
pounds) to the maximum of weight (4,840 pounds). flexcurv ensures that the spline is complete in the interval of
X–values spanned by the original reference points provided by the user. The describe command lists the reference
splines, with their variable labels. The coefficients fitted by regress (with the noconst option) are simply the fitted
values of mpg at the reference points. Figure 3 shows observed and fitted values of mpg, plotted against weight. The
fitted curve is calculated using predict (see [R] predict), and is interpolated cubically between the reference points.

The flexcurv parameterization allows us to use lincom to calculate confidence intervals for differences (or other
contrasts) between the values of the spline at different reference points. Here, we estimate the difference between
expected mileage at weights of 3,300 and 4,840 pounds:

. lincom cs3-cs5
(1) cs3 - cs5 = 0
--

mpg | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+--

(1) | 6.637834 .7610751 8.72 0.000 5.119531 8.156137
--

We see that cars weighing 3,300 pounds are expected to travel 5.12 to 8.16 more miles per gallon than cars
weighing 4,070 pounds.

0

5

10

15

20

25

30

35

40

45

1
,7

6
0

2
,5

3
0

3
,3

0
0

4
,0

7
0

4
,8

4
0

Weight (lbs.)

Mileage (mpg) Fitted values

Figure 3. Mileage plotted against weight (points) with fitted cubic spline (line).

Alternatively, we might want to choose the lowest reference point (1,760) as the base level of weight, and
estimate the difference in mileage between the other reference points and the base level. To do this, we use flexcurv
with the omit() option, followed by regress without the noconst option. This time, only splines for reference points
other than 1,760 pounds are generated. The regression model contains a parameter cons, equal to the expected

10 Post-publication update RBN-5

mileage for cars with the base weight of 1,760 US pounds. The other parameters are differences in mean mileage
between cars with weights equal to the non–base reference weights and cars with weights equal to the base reference
weight.

. flexcurv, xvar(weight) refpts(1760(770)4840) omit(1760) gen(ics) power(3)

. describe ics*
storage display value

variable name type format label variable label

ics2 float %8.4f Spline at 2,530
ics3 float %8.4f Spline at 3,300
ics4 float %8.4f Spline at 4,070
ics5 float %8.4f Spline at 4,840
. regress mpg ics*, robust
Linear regression Number of obs = 74

F(4, 69) = 42.19
Prob > F = 0.0000
R-squared = 0.6754
Root MSE = 3.3903

--
| Robust

mpg | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+--

ics2 | -7.275311 2.000318 -3.64 0.001 -11.26584 -3.284787
ics3 | -12.04104 1.853056 -6.50 0.000 -15.73779 -8.344299
ics4 | -14.88534 2.069253 -7.19 0.000 -19.01339 -10.75729
ics5 | -18.6789 1.937786 -9.64 0.000 -22.54468 -14.81312

_cons | 30.83764 1.795329 17.18 0.000 27.25606 34.41923
--

Alternatively, we might want to fit the same model, with reference points equal to the knots of the spline in and
around the completeness region of the spline, which are 1,760, 3,300 and 4,840 US pounds. This can be done using
frencurv, which generates two extra reference points, equal to knots outside the completeness region. The variable
labels of the reference splines at these reference points contain an indication that these reference points are outside
the completeness region. The regress command is used with the noconst option, and estimates parameters for all
the reference points, including the reference points outside the completeness region, whose corresponding parameters
represent the behavior of the spline as it returns to zero outside its completeness region. These parameters are not
easy to explain to non–mathematicians, and one of them even represents a negative mileage. However, in some
applications, such as seasonal time series, the knots (or the between–knot midpoints) are typically placed where
sudden change is likely to occur, and it might therefore be considered especially interesting to know the value of the
spline at these knots (or midpoints).

. frencurv, xvar(weight) refpts(1760 3300 4840) gen(kcs) power(3)

. describe kcs*
storage display value

variable name type format label variable label

kcs1 float %8.4f Spline at 220 (INCOMPLETE)
kcs2 float %8.4f Spline at 1,760
kcs3 float %8.4f Spline at 3,300
kcs4 float %8.4f Spline at 4,840
kcs5 float %8.4f Spline at 6,380 (INCOMPLETE)
. regress mpg kcs*, robust noconst
Linear regression Number of obs = 74

F(5, 69) = 751.86
Prob > F = 0.0000
R-squared = 0.9780
Root MSE = 3.3903

--
| Robust

mpg | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+--

kcs1 | 39.04485 13.55122 2.88 0.005 12.0109 66.07879
kcs2 | 30.83764 1.79533 17.18 0.000 27.25606 34.41923
kcs3 | 18.79659 .546976 34.36 0.000 17.70541 19.88778
kcs4 | 12.15876 .6937122 17.53 0.000 10.77484 13.54268
kcs5 | -.502905 11.44588 -0.04 0.965 -23.33681 22.331

--

Post-publication update 11

It is also possible to specify the omit() option with frencurv. If we add the options omit(1760) gen(ikcs)
to the previous example, and use regress without the noconst option, then the parameter cons is the mileage
at a weight of 1,760 US pounds, the parameters ikcs3 and ikcs4 are the differences between the mileages at
3,300 and 4,840 US pounds respectively, and the parameters ikcs1 and ikcs5 represent the behavior of the spline
as it converges to zero outside its completeness region. (Note that the omitted reference point must be inside the
completeness region for this interpretation to apply. frencurv issues a warning if the reference point specified by
omit() is outside the completeness region.)

. frencurv, xvar(weight) refpts(1760 3300 4840) omit(1760) gen(ikcs) power(3)

. describe ikcs*
storage display value

variable name type format label variable label

ikcs1 float %8.4f Spline at 220 (INCOMPLETE)
ikcs3 float %8.4f Spline at 3,300
ikcs4 float %8.4f Spline at 4,840
ikcs5 float %8.4f Spline at 6,380 (INCOMPLETE)
. regress mpg ikcs*, robust
Linear regression Number of obs = 74

F(4, 69) = 42.19
Prob > F = 0.0000
R-squared = 0.6754
Root MSE = 3.3903

--
| Robust

mpg | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+--

ikcs1 | 13.34675 12.47861 1.07 0.289 -11.5474 38.24089
ikcs3 | -12.04104 1.853056 -6.50 0.000 -15.73779 -8.344299
ikcs4 | -18.6789 1.937786 -9.64 0.000 -22.54468 -14.81312
ikcs5 | -26.20107 11.34446 -2.31 0.024 -48.83264 -3.569498
_cons | 30.83764 1.795329 17.18 0.000 27.25606 34.41923

--

Finally, for the most technical people, we can fit the same model yet again, using bspline instead of frencurv.
Here, the splines are B–splines rather than reference splines. The variable labels show the interval with positive
values of each B–spline, delimited by knots, including the extra knots calculated by bspline. The parameters are
expressed in miles per gallon, but none of them are easy for non–mathematicians to interpret.

. bspline,xvar(weight) knots(1760 3300 4840) gen(bs) power(3)

. describe bs*
storage display value

variable name type format label variable label

bs1 float %8.4f B-spline on [-2,860,3,300)
bs2 float %8.4f B-spline on [-1,320,4,840)
bs3 float %8.4f B-spline on [220,6,380)
bs4 float %8.4f B-spline on [1,760,7,920)
bs5 float %8.4f B-spline on [3,300,9,460)
. regress mpg bs*, robust noconst
Linear regression Number of obs = 74

F(5, 69) = 751.86
Prob > F = 0.0000
R-squared = 0.9780
Root MSE = 3.3903

--
| Robust

mpg | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+--

bs1 | 51.27904 21.29408 2.41 0.019 8.798513 93.75957
bs2 | 29.15291 4.494233 6.49 0.000 20.18716 38.11866
bs3 | 17.13522 2.879549 5.95 0.000 11.39068 22.87976
bs4 | 15.08579 4.958562 3.04 0.003 5.193726 24.97785
bs5 | -4.525804 18.37739 -0.25 0.806 -41.18769 32.13608

--

Technical note

There are other programs in Stata to generate splines. mkspline (see [R] mkspline) generates a basis of linear

12 Post-publication update RBN-5

splines to be used in a design matrix, as does frencurv, power(1), but the basis is slightly different, because the
fitted parameters for frencurv are reference values, whereas the fitted parameters for mkspline are the local slopes
of the spline in the inter–knot intervals. Patrick Royston and Gareth Ambler’s splinegen (Royston and Sauerbrei,
2007), William Dupont’s rc spline (downloadable from SSC), and Peter Sasieni’s spline and spbase (Sasieni,
1994), from STB–22, are used for fitting the so–called “natural” cubic spline, which is constrained to be linear outside
its completeness region, and is parameterized using the natural spline basis. (For more information about natural
cubic splines, see Durrlemain and Simon, 1999, and/or Harrell, 2001.) The splines fitted using bspline, frencurv
or flexcurv, on the other hand, are unconstrained, and parameterized using the B–spline or reference spline basis.
flexcurv, frencurv and bspline are therefore complementary to the other programs, and do not supersede them.

Historical note

This document is a post–publication update of an article which appeared in the Stata Technical Bulletin (STB)
as Newson (2000). A similar article, also updating the principles of reference splines, is Newson (2012).

Acknowledgements

The idea for the name frencurv came from Nicholas J. Cox of Durham University, UK, who remarked that the
method was like an updated French curve when I described it on Statalist.

References

de Boor C. 1978. A Practical Guide to Splines. New York: Springer Verlag.

Durrlemain S. and R. Simon. 1999. Flexible regression models with cubic splines. Statistics in Medicine 8: 551–561.

Harrell F. E. 2001. Regression Modeling Strategies With Applications to Linear Models, Logistic Regression and Survival Analysis.

New York: Springer–Verlag.

Newson R. 2000. sg151: B–splines and splines parameterized by their values at reference points on the X–axis. Stata Technical Bulletin

57: 20–27. Reprinted in Stata Technical Bulletin Reprints, vol. 10, pp. 221–230.

Newson, R. B. 2012. Sensible parameters for univariate and multivariate splines. The Stata Journal 12(3): 479–504.

Royston P., and W. Sauerbrei. 2007. Multivariate modelling with cubic regression splines: A principled approach. The Stata Journal 7(1):

45-70.

Sasieni P. 1994. snp7: Natural cubic splines. Stata Technical Bulletin 22: 19–22. Reprinted in Stata Technical Bulletin Reprints, vol. 4,

pp. 171–174.

Unser M., A. Aldroubi and M. Eden. 1992. On the asymptotic convergence of B–spline wavelets to Gabor functions. IEEE Transactions

on Information Theory 38: 864–872.

Wold S. 1971. Analysis of kinetic data by means of spline functions. Chemica Scripta 1: 97–102.

Wold S. 1974. Spline functions in data analysis. Technometrics 16: 1–11.

Ziegler Z. One–sided L1–approximation by splines of an arbitrary degree. In: Schoenberg I. J. (ed.), 1969. Approximations with Special

Emphasis on Spline Functions. New York: Academic Press.

