
The Stata Journal (2001) 1, Number 1, pp. 1–24

Confidence intervals and p-values for delivery to
the end user

Roger Newson
King’s College London, UK

roger.newson@kcl.ac.uk

Abstract. Statisticians make their living producing confidence intervals and p-
values. However, those in the Stata log are not ready for delivery to the end user,
who usually wants to see statistical output either as a plot or as a table. This article
describes a suite of programs used to convert Stata results to one or other of these
forms. The eclplot package creates plots of estimates with confidence intervals,
and the listtex package outputs a Stata data set in the form of table rows that can
be inserted into a plain TEX, LATEX, HTML or word processor table. To create a
Stata data set that can be output in these ways, we can use the parmest, dsconcat
and lincomest packages to create data sets with one observation per estimated
parameter, the sencode, tostring, ingap and reshape packages to process these
data sets into a form ready to be output, and the descsave and factext packages
to reconstruct, in the output data set, categorical predictor variables represented
by dummy variables in regression models.

Keywords: st0001, confidence interval, p-value, plot, table, estimation results,
TEX, LATEX, HTML, word processor, presentation, eclplot, listtex, parmest,
dsconcat, lincomest, sencode, tostring, ingap, reshape, descsave, factext

1 Introduction

Statisticians (and other statistically-minded scientists) make much of their living pro-
ducing confidence intervals and p-values. However, the confidence intervals and p-values
output to Stata logs are not in any form which can be delivered to end users, such as
the audience at a presentation or the readers of a journal. These end users, at the very
least, want the results to be formatted to a consistent number of decimal places, or
possibly significant figures. To be understood by an audience not composed of statis-
tical programmers, statistical results are usually presented in one of two ways. These
are tables, which are typically preferred by medical periodicals, particularly those in
the British Medical Journal (BMJ) group, and plots, which have much more immediate
impact in a seminar or a conference presentation. To this day, many Stata users spend
a lot of time manually rounding the estimates, confidence limits and p-values in Stata
logs, writing them down in tables (often large), and plotting them (often using graphics
software other than Stata). This does not constitute ”the human use of human beings”
(see Wiener (1988)), although there are good reasons why users of Stata versions before
Version 8 traditionally did a lot of their graphics otherwise.

This article outlines how the whole process of producing statistical results for delivery
to readers and audiences can be executed within Stata, transferring the plots and tables

c© 2001 Stata Corporation st0001

2 Confidence intervals and p-values for delivery to the end user

to word processors, presentation packages and typesetting packages only at the end.
This is done using a suite of packages downloadable from SSC, together with some of
the facilities of official Stata. Each of these packages can be downloaded alone, but the
different packages can be used together in ways not easily appreciated by examining the
on-line help of each package in isolation, although the on-line help files of these packages
frequently refer to each other. The remaining Sections describe the various subsets into
which these packages naturally fall. First, we introduce the eclplot and listtex
packages, which are used to produce the plots and tables, respectively, taking, as input,
Stata data sets with one observation per estimated parameter, or one observation per
table row. Second, we introduce the packages parmest, dsconcat and lincomest,
which create Stata data sets with one observation per estimated parameter and data on
parameter estimates, confidence limits, p-values and possibly other parameter attributes
requested by the user. Third, we describe some tools for processing such data sets into a
form where the observations correspond to rows of a table or of a horizontal confidence
interval plot. These tools are the sencode and ingap packages, available on SSC, and
the official Stata utilities tostring and reshape. Finally, we introduce the descsave
and factext packages, which are used for reconstructing, in a parmest output data set,
categorical variables present as predictors in the regression models used to produce the
output. These categorical variables can also be plotted and tabulated.

2 Creating plots and tables using eclplot and listtex

Statistical results presented in presentations at meetings, journal articles and Web pages
are presented in two ways, namely plots and tables. We start by introducing two pack-
ages used to produce these two respective forms of output for insertion into a presen-
tation document, a word processor or typesetting document, or a HTML document.
These packages are eclplot, which produces Stata 8 graphics plotting estimates and
confidence limits against another variable, and listtex, which outputs Stata data sets
as table rows that can be inserted into tables in a range of document types. This is
intended to motivate the user to read further and find out how to create the Stata
data sets that eclplot and listtex take as input. Such input data sets are usually
themselves created as output by the other Stata packages described in this article.

2.1 Creating confidence interval plots using eclplot

As a statistician, I find that most of the graphics that I present are horizontal plots of
confidence intervals. Before I had access to Stata 8, I presented these at meetings using
Nicholas J. Cox’s package hplot, downloadable from SSC. This package represented
the state of the art in Stata 6 and 7 graphics, and the plots produced are at least
of presentation quality, in that they communicate confidence intervals with a lot more
immediate impact than could be done with a table. On upgrading to Stata 8, I naturally
wanted to do the same, only with better graphics.

For the special case of confidence intervals for means, Nicholas J. Cox has produced

Roger Newson 3

a Stata 8 package ciplot, available on SSC. However, for the more general confidence
interval plot, I developed the eclplot package. eclplot takes, as input, a Stata data set
with four variables, containing, respectively, the estimates, the lower confidence limits,
the upper confidence limits, and a fourth variable, to be plotted on the other axis of the
confidence interval plot. It creates, as output, horizontal or vertical confidence interval
plots, in which the estimates and upper and lower confidence limits are plotted on one
axis and the fourth variable on the other axis.

For instance, suppose that we have created a data set with one observation per
confidence interval for a regression model comparing each of the 6 countries of origin
of the companies making the cars in the auto data, shipped with Stata (US, Germany,
Japan, France, Italy, Sweden). Suppose, also, that this data set has variables country,
encoding the country, and estimate, min95 and max95, representing the estimates and
lower and upper 95% confidence limits, respectively, of the parameters, most of which
are differences in fuel use (gallons per 100 miles) between cars from a given country and
cars from the US. (We will find out later how we might construct such a data set.) The
countries and confidence intervals might be listed and plotted as follows:

. list parm label country estimate min95 max95,clean

parm label country estimate min95 max95
1. US 0.00 0.00 0.00
2. _Icountry_2 country==2 Germany -1.17 -2.13 -0.21
3. _Icountry_3 country==3 Japan -1.30 -2.09 -0.50
4. _Icountry_4 country==4 France 0.18 -1.54 1.90
5. _Icountry_5 country==5 Italy -0.56 -2.97 1.85
6. _Icountry_6 country==6 Sweden 0.56 -1.85 2.97
7. _cons Constant . 5.32 4.99 5.65

. eclplot estimate min95 max95 country if parm != "_cons", hori ///
> estopts(msymbol(circle) msize(vlarge)) ciopts(msize(huge)) ///
> yscale(range(0 7)) ylabel(1(1)6) ///
> xlabel(-4(1)4,format(%8.0f)) xline(0, lpattern(dot)) ///
> xtitle("Difference in fuel use from US (gallons/100 miles)") ///
> xsize(4) ysize(3)

The resulting graph is given as Figure 1. Note that US-made cars are the reference
category. The variables parm and label, and the last observation (excluded from the
plot), will be explained in later Sections.

2.2 Outputting table rows using listtex

Tables have less immediate impact than plots, but have the advantages of consuming
less space, and of being easier for readers to copy, if they want to re-tabulate or re-plot
the data in their own ways. They therefore tend to be the preferred medium for many
periodicals, with the result that scientists are often required to deliver them. A com-
prehensive labour-saving tool for producing tables is the listtex package, whose most
recent version (currently in Stata 8) can be downloaded from SSC, although a Stata 7
version can be downloaded from my website at http://www.kcl-phs.org.uk/rogernewson.
This package uses, as input, a Stata data set (or a subset of a Stata data set), and cre-

4 Confidence intervals and p-values for delivery to the end user

US

Germany

Japan

France

Italy

Sweden

C
ou

nt
ry

 o
f o

rig
in

−4 −3 −2 −1 0 1 2 3 4

Difference in fuel use from US (gallons/100 miles)

Figure 1: Differences in fuel use between cars from non-US countries and US-made cars.

ates, as output, a list of table rows, which may be inserted into a table in a TEX, LATEX,
word processor, presentation or HTML document. These table rows may be echoed to
the Stata log to be cut and pasted, written to a file to be linked or embedded, or both.

For instance, in the auto data, we might want to create tables of attributes of the
4 Volkswagen models in Microsoft Word and/or LATEX and/or HTML. The listtex
package can create all 3 types of table rows, as follows:

. * Demonstrate listtex *

. listtex make mpg weight price if index(make,"VW ") == 1, type
VW Dasher&23&2,160&7,140
VW Diesel&41&2,040&5,397
VW Rabbit&25&1,930&4,697
VW Scirocco&25&1,990&6,850

. listtex make mpg weight price if index(make,"VW ") == 1, type rstyle(html)
<tr><td>VW Dasher</td><td>23</td><td>2,160</td><td>7,140</td></tr>
<tr><td>VW Diesel</td><td>41</td><td>2,040</td><td>5,397</td></tr>
<tr><td>VW Rabbit</td><td>25</td><td>1,930</td><td>4,697</td></tr>
<tr><td>VW Scirocco</td><td>25</td><td>1,990</td><td>6,850</td></tr>

. listtex make mpg weight price if index(make,"VW ") == 1, type rstyle(tabular)
VW Dasher&23&2,160&7,140\\
VW Diesel&41&2,040&5,397\\
VW Rabbit&25&1,930&4,697\\
VW Scirocco&25&1,990&6,850\\

The listtex command is executed 3 times, with the same type option (indicat-
ing output to the Stata log and the Results window) and different rstyle() options
(indicating row style). In each case, listtex produces 4 lines of alien-looking output,

Roger Newson 5

which appear in yellow in the Results window, whereas the commands appear in green.
The first output has the default row style, and can be cut and pasted from the Results
window into a Microsoft Word document, where it can be converted to the rows of a
table using the menu sequence Table->Convert->Text to Table and specifying the
ampersand as the text separation option. The second output can be cut and pasted
into a HTML table, where it will be interpreted as table rows. The third output can be
cut and pasted into an empty LATEX tabular environment, which might be as follows:

\begin{tabular}{rrrr}
\hline
\textit{Make}&\textit{Mileage (mpg)}&\textit{Weight (lbs)}&\textit{Price (dollars)}\\
\hline
\hline
\end{tabular}

If the third listtex output is inserted between the fourth and fifth lines of this
empty environment, then the resulting table might look like Table 1.

Table 1: Volkswagen cars in the auto data

Make Mileage (mpg) Weight (lbs) Price (dollars)
VW Dasher 23 2,160 7,140
VW Diesel 41 2,040 5,397

VW Rabbit 25 1,930 4,697
VW Scirocco 25 1,990 6,850

In its current Stata 8 version, listtex has headlines() and footlines() op-
tions, which are an alternative way of generating the parts of TEX, LATEX or HTML
tables above and below the table rows. Many other row styles are possible, because the
rstyle() option simply specifies a combination of 4 other options, begin(), delimiter(),
end() and missnum(), specifying, respectively, a string beginning each row, a string de-
limiting columns, a string ending each row, and a string for missing numeric values.
All of these options except delimiter() may be empty strings. listtex can therefore
write table rows for many table styles, possibly including styles for TEX dialects not
yet invented. In particular, listtex can specify TEX row styles with horizontal rules
between rows and/or columns. (See the on-line help for listtex for an example.)

listtex is not the only Stata package for outputting Stata results as a table. For
outputting a variable list to a TEX table, James Hardin’s textab command creates a
whole table (not only the rows), and provides a greater range of user-specifiable options
than listtex, see Hardin (1995). Antoine Terracol’s outtex, Marc–Andreas Muendler’s
est2tex, Antoine Terracol’s sutex and Christopher F. Baum’s outtable also output es-
timation results, estimation results (again), summary results and matrices, respectively,
to TEX, and can be located for downloading using the Stata findit command. These
packages are complementary to listtex, which has the advantage (and disadvantage)
that the user has the freedom (and responsibility) to specify the row style and general

6 Confidence intervals and p-values for delivery to the end user

table format in an arbitrary way. For instance, many tables of confidence intervals,
such as Table 5, have multiple header rows, some of which contain multi-column sets
of merged cells, typically spanning the columns containing the estimates and the lower
and upper confidence limits.

3 Creating data sets with one observation per parameter

To create a plot such as Figure 1 using eclplot, the user must first create a data set
with one observation per confidence interval to be plotted, and data on the parameter
estimates, confidence limits and other parameter attributes. Such data sets may be
created initially by using the parmest package, downloadable from SSC, which creates
these data sets from Stata estimation results, and is described in the first Subsection
of this Section. The remaining Subsections describe two packages, also downloadable
from SSC, which are often used together with parmest. These are dsconcat, which
concatenates subsets of multiple Stata data sets, and lincomest, a version of lincom
which saves the results as Stata estimation results which can then be used by parmest.

3.1 Saving estimation results as a data set using parmest

The parmest package was first published in Newson (1999) and updated in Newson
(2000), The latest version on SSC, currently written in Stata 8, has evolved greatly
since then, although Stata 7, 6 and 5 versions can still be downloaded from my website
at http://www.kcl-phs.org.uk/rogernewson using either a browser or the net command.
The package was written because it did not seem easy in Stata, at the time, to save
estimation results to be plotted, or even to be listed to a consistent format, both of which
were easily done using other software such as Genstat or SAS. The program parmest
was my first response to this problem, and takes, as input, the currently available Stata
estimation results, creating, as output, a data set with one observation per parameter.
I now usually use the program parmby, also in the parmest package, which is a “quasi-
byable” front end to parmest, and calls a user-specified estimation command to create an
output data set with one observation per parameter, or one observation per parameter
per by-group if the by() option is specified. With both programs, the output data
sets may be listed to the Stata log and/or saved to disk and/or written to memory,
overwriting any previously existing data set. More about Stata estimation commands
and results can be found in the Stata manuals under [R] estimates, [P] estimates,
[P] ereturn and [U] 23 Estimation and post-estimation commands.

The possible variables in the parmest and parmby output data sets are listed in
Table 2. The subset of these variables that is actually created depends on various options
mentioned in the online help for parmest and parmby. The variables idnum and idstr
are only present if the user specifies the options idnum() and idstr(), respectively,
and have the same value for all observations in the output data set. The variable eq
is only present if the estimation results are from a command which creates estimation
matrices with equation names, such as a command which fits a multiple equation model.

Roger Newson 7

Table 2: Variables in the parmest and parmby output data sets

Numeric
Name or String Description

parmest

and parmby:
idnum Numeric Numeric ID
idstr String String ID

eq String Equation name
parm String Parameter name

label String Parameter X-variable label
ylabel String Y -variable label

estimate Numeric Parameter estimate
stderr Numeric Standard error of parameter estimate

dof Numeric Degrees of freedom
t Numeric t–test statistic
z Numeric z–test statistic
p Numeric p–value

stars String Stars for p–value
minyy Numeric Lower xx% confidence limit
maxyy Numeric Upper xx% confidence limit
em y String yth macro estimation result requested
es y Numeric yth scalar estimation result requested
ev y Numeric yth vector estimation result requested

parmby only:
By-variables Either Variables specified in the by() option

parmseq Numeric Parameter sequence number
command String Estimation command

The variable label contains the variable label of the X-variable corresponding to the
parameter, and is only present if the label option is specified. The variable ylabel
contains the variable label of the Y -variable, and is only present if the ylabel option
is specified. Either the variables dof and t are present or the variable z is present,
depending on whether the parameter estimates are assumed to have a t-distribution or
a Normal distribution. The variable p contains p-values to test the hypothesis that the
corresponding parameter is zero, or one if the eform option is specified. The variable
stars is only generated if the user specifies a set of p-value thresholds in the stars()
option. Pairs of xx% confidence limits minyy and maxyy are calculated using a list of one

8 Confidence intervals and p-values for delivery to the end user

or more confidence levels xx, which may be specified in the level() option, and which
defaults to the currently set confidence level. The number yy used to number the xx
percent confidence limits minyy and maxyy is equal to the confidence level xx unless the
user specifies the option clnumber(rank), in which case the lower and upper confidence
limits are numbered min1, min2, . . ., and max1, max2, . . ., respectively, in ascending
order of confidence level. The variables em y, es y and ev y contain extra macro,
scalar and vector estimation results, respectively, as and when specified by the user in
the emac(), escal() and evec() options, respectively. The user can therefore save
additional parameter attributes, such as the number of observations in the regression
analysis as stored in e(N), or the name of the Y -variable in the analysis as specified
in e(depvar). To find out what estimation results are available for a given estimation
command, the user can type ereturn list in Stata 8, or estimates list in Stata 6
or 7, after the estimation command has been called. The by-variables are only present
if the by() option of parmby is specified. The variable command is only present if the
command option of parmby is specified. The variable parmseq contains the sequential
order of the parameter in the model specification. All of these variables except the
by-variables can be renamed using the rename() option, and this option can therefore
be used to prevent name clashes involving the by-variables.

The parmest package can be used at different levels of sophistication. On the sim-
plest level, we can use parmest with its list() option as a more powerful version of
the estimates table command of Stata 8, and simply list the estimation results in
a user-friendly way. For instance, in the auto data, we might compare the weights of
non-American cars with those of American cars as follows:

. regress weight foreign, robust

Regression with robust standard errors Number of obs = 74
F(1, 72) = 56.52
Prob > F = 0.0000
R-squared = 0.3514
Root MSE = 630.23

Robust
weight Coef. Std. Err. t P>|t| [95% Conf. Interval]

foreign -1001.206 133.1696 -7.52 0.000 -1266.675 -735.7376
_cons 3317.115 96.81517 34.26 0.000 3124.118 3510.113

. parmest, label list(parm label estimate min* max* p) ///
> format(estimate min* max* %8.2f p %8.2e)

parm label estimate min95 max95 p

foreign Car type -1001.21 -1266.67 -735.74 1.2e-10
_cons Constant 3317.12 3124.12 3510.11 2.6e-46

In this case, parmest lists the estimation results of the user’s choice (using the
list() option) to the user’s chosen numbers of decimal places, or significant figures for
the p-values (using the format() option), and labels the parameters (using the label

Roger Newson 9

option). If we do this, then the parmest output data set is simply listed, and not saved,
and the old data set remains in the memory.

On a less simple level, we might want to keep the parmest output data set in memory,
overwriting the existing data set, and produce more advanced listings (or even plots). In
the auto data, we might generate variables gp100m=100/mpg and tons=weight/2240,
containing a car’s fuel use in gallons/100 miles and weight in UK tons, respectively, and
estimate the numbers of gallons consumed per 100 miles per incremental ton in US and
non-US cars, using the following program:

parmby "regress gp100m tons, robust", by(foreign) escal(N) rename(es_1 N) ///
format(estimate min* max* %8.2f p %8.2e) label norestore

bysort foreign N (parmseq): list parm label estimate min* max* p, clean noobs

We use parmby to fit a separate regression model for each car type, using the
escal(N) option to create a variable es 1 containing the extra scalar estimation result
e(N) containing the number of observations for each by-group, and use the rename()
option to rename es 1 to the more understandable N. We set the formats as before,
and use the norestore option to save the output data set in memory, overwriting the
original data. This new data set is then listed, sorted by foreign N (parmseq), or
primarily by car type and secondarily by the order of specification of the parameter in
the model:

. parmby "regress gp100m tons, robust", by(foreign) escal(N) rename(es_1 N) ///
> format(estimate min* max* %8.2f p %8.2e) label norestore
Command: regress gp100m tons, robust
By variables: foreign

-> foreign = Domestic

Regression with robust standard errors Number of obs = 52
F(1, 50) = 127.84
Prob > F = 0.0000
R-squared = 0.7651
Root MSE = .59936

Robust
gp100m Coef. Std. Err. t P>|t| [95% Conf. Interval]

tons 3.44974 .305102 11.31 0.000 2.836924 4.062555
_cons .209591 .4055204 0.52 0.608 -.6049207 1.024103

-> foreign = Foreign

Regression with robust standard errors Number of obs = 22
F(1, 20) = 62.05
Prob > F = 0.0000
R-squared = 0.6679
Root MSE = .6758

Robust
gp100m Coef. Std. Err. t P>|t| [95% Conf. Interval]

10 Confidence intervals and p-values for delivery to the end user

tons 4.838136 .6141827 7.88 0.000 3.556974 6.119299
_cons -.6892427 .6774664 -1.02 0.321 -2.102413 .7239274

. bysort foreign N (parmseq): list parm label estimate min* max* p, clean noobs

-> foreign = Domestic, N = 52

parm label estimate min95 max95 p
tons Weight (tons) 3.45 2.84 4.06 2.2e-15
_cons Constant 0.21 -0.60 1.02 6.1e-01

-> foreign = Foreign, N = 22

parm label estimate min95 max95 p
tons Weight (tons) 4.84 3.56 6.12 1.5e-07
_cons Constant -0.69 -2.10 0.72 3.2e-01

We note that the 52 US cars consume 3.45 gallons (95% CI, 2.84 to 4.06 gallons)
per 100 incremental ton-miles, whereas the 22 non-US cars consume 4.84 gallons (95%
CI, 3.56 to 6.12 gallons) per 100 incremental ton-miles.

We might be even more advanced, and store the parmby output to a disk file, leaving
the existing data set unharmed:

parmby "regress gp100m tons, robust", by(foreign) escal(N) rename(es_1 N) ///
format(estimate min* max* %8.2f p %8.2e) label saving(myparms,replace)

This time, we save the same output data set as before in a file myparms.dta, and
have the option of returning to it later for further processing.

The parmest package is not the only way of creating a data set with one observation
per parameter and data on confidence intervals and/or p-values. Not all confidence
intervals are calculated using standard errors, as are those from Stata estimation results.
The official Stata packages centile and epitab create conservative confidence intervals,
using formulas based on exact distributions. Such confidence intervals can be saved to
Stata data sets using the postfile package, or possibly using statsby.

3.2 Concatenating subsets of parameters using dsconcat

A parmest or parmby output contains parameters from only one set of estimation re-
sults, even though, in the case of parmby, there may be multiple by-groups. By contrast,
most of the plots and tables I present in my work contain a subset of the parameters
from multiple sets of estimation results. For instance, a medical scientist often presents
a plot of confidence intervals for unadjusted odds ratios for a disease associated with a
list of exposures, and also a similar plot of confidence intervals for the corresponding
confounder-adjusted odds ratios for the same disease associated with the same list of
exposures. These typically arise from a list of logistic regression models (one per ex-
posure), with the disease as outcome and the appropriate exposure as the predictor,
and a second list of logistic regression models (one per exposure), with the disease as
outcome and the exposure and a list of confounders as predictors. The audience might
have neither the time nor the inclination to view the confounder-associated odds ratios,

Roger Newson 11

and probably will not even understand the baseline odds.

The dsconcat package concatenates subsets of the observations and/or the variables
from a list of Stata data sets, and writes the resulting concatenated data set into the
memory, overwriting any existing data set. This is especially useful if the user has
created a list of parmest outputs, one for each of a list of regression models, and wants
to collect, from each one, the parameters that the audience or readership want to see.
The latest version is downloadable from SSC, although an earlier Stata 6 version can
still be downloaded from http://www.kcl-phs.org.uk/rogernewson.

If all the interesting parameters are concatenated in one data set, then it is useful
to know which parameters are from which regression model. Fortunately, parmest
allows the user to do this, because some of the variables mentioned in Table 2 are
constant within any one parmest output data set, and can be different in different
parmest output data sets. The variables idnum and idstr contain numeric and string
data set identifiers, respectively. The variable ylabel contains the variable label of the
outcome variable. The variable command contains the whole estimation command called
by parmby, complete with variable list, subsetting clauses and options, truncated if
necessary to the maximum string variable length in the Stata version used. Finally, the
extra macro-result variables em y and the extra scalar-result variables es y, generated
by the emac() and escal() options respectively, are also the same for all observations
in the same output data set, and have values copied from the estimation results.

For instance, in the auto data, after generating gp100m and tons, we might fit
unadjusted and adjusted regression models using tons and foreign to predict gp100m,
using the following program:

tempfile tf1 tf2 tf3
parmby "regr gp100m tons", lab saving(‘tf1’,replace) idn(1) ids(Unadjusted)
parmby "regr gp100m foreign", lab saving(‘tf2’,replace) idn(2) ids(Unadjusted)
parmby "regr gp100m tons foreign", lab saving(‘tf3’,replace) idn(3) ids(Adjusted)
dsconcat ‘tf1’ ‘tf2’ ‘tf3’
format estimate min* max* %8.2f
format p %8.2e
bysort idnum idstr (parmseq): list parm label estimate min* max* p, ///
nocomp clean noobs

We use parmby 3 times, each time saving the output in a temporary file and using the
idnum and idstr options to create numeric and string data set identifier variables. (Note
that parmby does not always have a by() option.) We then use dsconcat to concatenate
the 3 temporary output files into the memory (overwriting the existing data), add some
formats to the confidence intervals and p-values, and list the concatenated data set as
follows:

. bysort idnum idstr (parmseq): list parm label estimate min* max* p, ///
> nocomp clean noobs

-> idnum = 1, idstr = Unadjusted

parm label estimate min95 max95 p
tons Weight (tons) 3.15 2.70 3.60 3.7e-22

12 Confidence intervals and p-values for delivery to the end user

_cons Constant 0.77 0.14 1.40 1.7e-02

-> idnum = 2, idstr = Unadjusted

parm label estimate min95 max95 p
foreign Car type -1.01 -1.61 -0.40 1.6e-03
_cons Constant 5.32 4.99 5.65 3.1e-44

-> idnum = 3, idstr = Adjusted

parm label estimate min95 max95 p
tons Weight (tons) 3.64 3.11 4.17 1.1e-21

foreign Car type 0.62 0.22 1.02 2.7e-03
_cons Constant -0.07 -0.88 0.73 8.6e-01

Non-US cars consume fewer gallons per 100 miles than US cars, but more than
US cars when adjusted for weight. Note that the numeric ID idnum, used mainly for
sorting, is different in the 3 models, but the string ID idstr is used to distinguish the
2 unadjusted models from the adjusted model. This new concatenated data set can, of
course, be saved in turn for future use.

In this case, dsconcat concatenated all observations from the output files, creating
a data set in memory that included all the parameters. However, dsconcat has a
subset() option, allowing it to include only a subset of observations and/or variables.
The user could have typed

dsconcat ‘tf1’ ‘tf2’ ‘tf3’, subset(if parm != " cons")

and excluded the uninteresting constant parameters, which represent the fuel consump-
tion over 100 miles of hypothetical US-made cars with zero weight. This option is
useful if the user has fitted a large number of regression models, each of which has
many uninteresting confounder-related parameters.

3.3 Linear combinations using lincomest

We might want to include linear combinations in our data set of parameter estimates,
especially as these are often the most interesting parameters estimated. Unfortunately,
the lincom command cannot be used with parmby or parmest, as it is not an estimation
command and saves no estimation results in e(). Fortunately, the lincomest program
is a version of lincom which is an estimation command, and can be used with parmest.

In the auto data with the added variables gp100m, tons and us = !foreign, we
might use the somersd package to measure association of US origin with the two added
variables, and compare the two associations. The somersd package is described in
Newson (2002), where it is used to measure and compare these two associations in the
auto data. Using parmby and lincomest, we can carry out the same analysis using the
following program:

. tempfile tf1 tf2

. parmby "somersd us tons gp100m", label saving(‘tf1’,replace)
Command: somersd us tons gp100m

Roger Newson 13

Somers’ D with variable: us
Transformation: Untransformed
Valid observations: 74

Symmetric 95% CI

Jackknife
us Coef. Std. Err. z P>|z| [95% Conf. Interval]

tons .7508741 .0832485 9.02 0.000 .58771 .9140383
gp100m .4571678 .135146 3.38 0.001 .1922866 .7220491

(note: file C:\WINDOWS\TEMP\ST_01000079.tmp not found)
file C:\WINDOWS\TEMP\ST_01000079.tmp saved

. parmby "lincomest (tons-gp100m)/2", label saving(‘tf2’,replace)
Command: lincomest (tons-gp100m)/2
Confidence interval for formula:
(tons-gp100m)/2

us Coef. Std. Err. z P>|z| [95% Conf. Interval]

(1) .1468531 .0442198 3.32 0.001 .0601838 .2335224

(note: file C:\WINDOWS\TEMP\ST_0100007a.tmp not found)
file C:\WINDOWS\TEMP\ST_0100007a.tmp saved

. dsconcat ‘tf1’ ‘tf2’

. format estimate min* max* %8.2f

. format p %8.2e

. list parm label estimate min* max* p, clean noobs

parm label estimate min95 max95 p
tons Weight (tons) 0.75 0.59 0.91 1.9e-19

gp100m Fuel use (gallons/100m) 0.46 0.19 0.72 7.2e-04
(1) (tons-gp100m)/2 0.15 0.06 0.23 9.0e-04

We use parmby to call somersd and lincomest, each time saving the results to
a temporary output file, and then concatenate the two output files into the memory
to be formatted and listed. The parameters are two Somers’ D values measuring the
association between US origin and the 2 predictors (weight and fuel use), and half the
difference between the two Somers’ D values. The message is that weight is better than
fuel consumption as a predictor of US origin, because, if one car uses less gas to move
more mass and another uses more gas to move less mass, then the first car is more likely
to be US-made. Note that, for a linear combination parameter, parm is set to "(1)",
and label is set to the linear combination formula.

4 Reformatting data with sencode, tostring, ingap and
reshape

Output data sets created by the methods of the previous Section have the disadvantage
that some variables are string and others are numeric. The end user, on the other hand,
wants either plots or tables. If the user wants plots, then all variables plotted should be
numeric. If the user wants tables, on the other hand, then all variables tabulated should

14 Confidence intervals and p-values for delivery to the end user

ideally be string, because confidence limits are usually tabulated with parentheses and
commas, and p-values are sometimes tabulated with stars, and neither of these are
provided by any Stata format at present. Also, we might like to add gaps between rows
and column titles, or create tables with two or more columns of confidence intervals.
The remaining Subsections of this Section show how these things can be done in Stata.

4.1 Encoding string variables to numeric with sencode

The sencode package is a “sequential” version of encode. It takes, as input, a string
variable, and creates, as output, a numeric variable, with value labels equal, in each
observation, to the input string variable. However, unlike encode, sencode encodes the
string values to numbers in a non-alphanumeric order, which defaults to the order of
appearance of the string value in the data set. The output numeric variable can be
useful in creating plots, either as a by-variable or as an axis labelling variable.

Given the data set listed on Page 11, we might use sencode to create a plot as
follows:

drop if parm == "_cons"
sencode idstr, gene(modtype)
sencode label, gene(predictor)
lab var modtype "Model type"
lab var predictor "Predictor"
sort modtype predictor
list modtype predictor estimate min* max* p, clean noobs
eclplot estimate min95 max95 predictor, hori ///
estopts(msymbol(circle) msize(vlarge)) ciopts(msize(huge)) ///
by(modtype,legend(off) compact) ///
yscale(range(0 3)) ylabel(1 2, nogrid) ///
xline(0,lpattern(shortdash)) xlabel(, format(%8.0f)) ///
xtitle("Effect (gallons/100 miles)") ///
xsize(4) ysize(3)

We first drop the uninteresting intercepts, and then encode sequentially the string
variables idstr and label to give the labelled numeric variables modtype and predictor,
respectively. We then sort the data set and list it, and it looks like this:

. list modtype predictor estimate min* max* p, clean noobs

modtype predictor estimate min95 max95 p
Unadjusted Weight (tons) 3.15 2.70 3.60 3.7e-22
Unadjusted Car type -1.01 -1.61 -0.40 1.6e-03

Adjusted Weight (tons) 3.64 3.11 4.17 1.1e-21
Adjusted Car type 0.62 0.22 1.02 2.7e-03

We then create the confidence interval plot in Figure 2. Note that the labels of both
modtype and predictor are coded non-alphabetically, in order of appearance in the
data set.

Roger Newson 15

Weight (tons)

Car type

−2 0 2 4 −2 0 2 4

Unadjusted Adjusted

P
re

di
ct

or

Effect (gallons/100 miles)
Graphs by Model type

Figure 2: Effects of weight and car type on fuel use in the auto data.

4.2 Converting numeric variables to string using tostring

The tostring package was written by Nicholas J. Cox and Jeremy B. Wernow, who
introduced it in Cox and Wernow (2000a) and updated it in Cox and Wernow (2000b).
It is discussed in Cox (2002). The latest version is part of official Stata 8 as from
13 August 2003, although a Stata 6 version can still be downloaded by typing, in Stata,

net from http://www.stata.com/stb/stb57

and selecting the package dm80 1. Had tostring not existed, then I would have had
to invent something similar. It replaces numeric variables with string variables of the
same names, containing the formatted string values of the numbers. This is very useful
when making tables of confidence intervals and p-values using listtex. For instance,
using the output data set listed on Page 11, we might create a table as follows:

. drop if parm == "_cons"
(3 observations deleted)

. tostring estimate min* max* p, use replace force
estimate was double now str5
estimate was forced to string; some loss of information
min95 was double now str5
min95 was forced to string; some loss of information
max95 was double now str5
max95 was forced to string; some loss of information
p was double now str7
p was forced to string; some loss of information

. replace min95 = "(" + min95 + ","

16 Confidence intervals and p-values for delivery to the end user

min95 was str5 now str7
(4 real changes made)

. replace max95 = max95 + ")"
max95 was str5 now str6
(4 real changes made)

. replace p="$" + subinstr(p,"e"," \times 10^{",1) + "}$"
p was str7 now str21
(4 real changes made)

. listtex idstr label estimate min95 max95 p, type rstyle(tabular)
Unadjusted&Weight (tons)&3.15&(2.70,&3.60)&3.7×10^{-22}\\
Unadjusted&Car type&-1.01&(-1.61,&-0.40)&1.6×10^{-03}\\
Adjusted&Weight (tons)&3.64&(3.11,&4.17)&1.1×10^{-21}\\
Adjusted&Car type&0.62&(0.22,&1.02)&2.7×10^{-03}\\

We first drop the intercepts, and then use tostring to convert the numeric vari-
ables estimate, min95, max95 and p to string. We then add parentheses and commas
to the confidence limits, convert the p-values from the Stata %8.2e format to a TEX
exponentiated form, and finally output the data set to LATEX tabular table rows using
listttex. These table rows can be cut and pasted from the Stata log into a LATEX
table to form Table 3.

Table 3: Effects of weight and car type on fuel use in the auto data

Model type Predictor Estimate (95% CI) p
Unadjusted Weight (tons) 3.15 (2.70, 3.60) 3.7× 10−22

Unadjusted Car type -1.01 (-1.61, -0.40) 1.6× 10−03

Adjusted Weight (tons) 3.64 (3.11, 4.17) 1.1× 10−21

Adjusted Car type 0.62 (0.22, 1.02) 2.7× 10−03

4.3 Inserting gap rows using ingap

Table 3 might look better if, instead of having 2 repetitive “row label” columns on the
left, it had a single, less repetitive row label column, as in Table 4. Similarly, Figure 2
might look better if the 4 confidence intervals were arrayed in a single column, as in
Figure 3. In Stata 6 and 7, plots like Figure 3 are produced using the hplot package
mentioned previously, with the gaps() and glegend() options.

To do the same in Stata 8, both for plots and for tables, I wrote the ingap package,
which inserts gap observations in Stata data sets next to (before or after) a list of
existing observations. ingap assigns values to the variables in the new gap observations
according to a rule under which there are up to 3 classes of variables, namely the by-
variables, a string row label variable (specified by the rowlabel() option), and the
other variables. In a gap observation, the by-variables are assigned the same values
as in the existing observation next to which the gap observation is inserted. The row
label variable is assigned the appropriate value in a list of string values specified by

Roger Newson 17

the growlabel() option. The other variables are assigned missing values, unless the
rstring() option is specified, in which case the string variables are assigned values
equal to their names or labels. (The rstring() option was added to allow the user to
make title rows.)

The program to create the rows of Table 4 is as follows:

drop if parm=="_cons"
tostring estimate min* max* p,use replace force
replace min95 = "(" + min95 + ","
replace max95 = max95 + ")"
replace p = "$" + subinstr(p,"e"," \times 10^{",1) + "}$"
ingap 1 3, rowlabel(label) ///
growlabel("Unadjusted effects:" "Adjusted effects:")

list label estimate min95 max95 p, clean noobs
listtex label estimate min95 max95 p, type rstyle(tabular)

We drop the intercepts and convert the estimates, confidence limits and p-values to
string as before. We then use ingap to insert gap observations before existing observa-
tions 1 and 3, using label as the row label variable and specifying the values of label
in the 2 gap observations to be "Unadjusted effects:" and "Adjusted effects:"
respectively. Finally, we use list and listtex to list the data in human-readable and
LATEX-readable forms, respectively. The human-readable version is as follows:

. list label estimate min95 max95 p, clean noobs

label estimate min95 max95 p
Unadjusted effects:

Weight (tons) 3.15 (2.70, 3.60) 3.7×10^{-22}
Car type -1.01 (-1.61, -0.40) 1.6×10^{-03}

Adjusted effects:
Weight (tons) 3.64 (3.11, 4.17) 1.1×10^{-21}

Car type 0.62 (0.22, 1.02) 2.7×10^{-03}

Note that, in the gap observations, the variable label has the values assigned by
the growlabel() option, and the other variables have missing values. (There are no
by-variables in this example.)

The program to create Figure 3 is as follows:

drop if parm == "_cons"
ingap 1 3, rowlabel(label) ///
growlabel("Unadjusted effects:" "Adjusted effects:")

sencode label, gene(predictor) manyto1
lab var predictor "Predictor"
list predictor estimate min* max* p, clean noobs
eclplot estimate min95 max95 predictor, hori ///
estopts(msymbol(circle) msize(vlarge)) ciopts(msize(huge)) ///
yscale(range(0 7)) ylabel(1(1)6, nogrid) ///
xline(0, lpattern(shortdash)) xlabel(, format(%8.0f)) ///
xtitle("Effect (gallons/100 miles)") ///
xsize(4) ysize(3)

This time, we drop the intercepts and then insert the gap observations as before,
with label as the row label variable. We then sequentially encode label to create the

18 Confidence intervals and p-values for delivery to the end user

numeric variable predictor, using the manyto1 option of sencode, because we want
the mapping from numbers to labels to be many-to-one. (The numbers 2 and 5 both
have the label "Weight (tons)", and the numbers 3 and 6 both have the label "Car
type".) We then list and plot the data set. The listing is as follows:

. list predictor estimate min* max* p, clean noobs

predictor estimate min95 max95 p
Unadjusted effects:

Weight (tons) 3.15 2.70 3.60 3.7e-22
Car type -1.01 -1.61 -0.40 1.6e-03

Adjusted effects:
Weight (tons) 3.64 3.11 4.17 1.1e-21

Car type 0.62 0.22 1.02 2.7e-03

Note that, this time, the variables listed are all numeric, so they can be plotted, and
the estimates, confidence limits and p-values have numeric missing values in the gap
observations.

It is often a good idea to include a preserve and a restore before and after programs
like these, which modify the data set in memory, so that the original data set is restored
afterwards. This is especially true if the data set is to be modified in one way (using
sencode) to produce plots and in another way (using tostring) to produce tables.

Table 4: Effects of weight and car type on fuel use in the auto data (using ingap)

Predictor Estimate (95% CI) p
Unadjusted effects:

Weight (tons) 3.15 (2.70, 3.60) 3.7× 10−22

Car type -1.01 (-1.61, -0.40) 1.6× 10−03

Adjusted effects:
Weight (tons) 3.64 (3.11, 4.17) 1.1× 10−21

Car type 0.62 (0.22, 1.02) 2.7× 10−03

4.4 Multi-column tables of confidence intervals using reshape

Scientists often create tables with more than one column of confidence intervals. An
example is Table 5, which is a rearrangement of the confidence intervals of Table 4, with
unadjusted and adjusted effects side by side. (The p-values have been dropped to save
space, as often happens in medical journals.) In Stata, such tables can be produced
using the reshape package, based on work in Weesie (1997), but now part of official
Stata (see [R] reshape). The program to produce the rows of Table 5 is as follows:

drop if parm == "_cons"
sencode idstr, gene(modtype)
sencode label, gene(predictor)

Roger Newson 19

Unadjusted effects:

Weight (tons)

Car type

Adjusted effects:

Weight (tons)

Car type

P
re

di
ct

or

−2 0 2 4

Effect (gallons/100 miles)

Figure 3: Effects of weight and car type on fuel use in the auto data (using ingap).

lab var modtype "Model type"
lab var predictor "Predictor"
keep modtype predictor estimate min* max*
tostring estimate min* max*, use replace force
replace min95 = "(" + min95 + ","
replace max95 = max95 + ")"
reshape wide estimate min95 max95, i(predictor) j(modtype)
list predictor estimate1 min951 max951 estimate2 min952 max952, clean noobs
listtex predictor estimate1 min951 max951 estimate2 min952 max952, ///
type rstyle(tabular)

This time, we drop the intercepts, sequentially encode the two key variables speci-
fying model type and predictor, drop all variables not wanted in the Table, convert the
estimates and confidence limits to string, and then use reshape wide to reformat the
data set to have 1 observation per value of predictor and two versions of each of the es-
timate and confidence limit variables. The resulting data set is listed in human-readable
form as follows, before listing it in LATEX-readable form:

. list predictor estimate1 min951 max951 estimate2 min952 max952, clean noobs

predictor estima~1 min951 max951 estima~2 min952 max952
Weight (tons) 3.15 (2.70, 3.60) 3.64 (3.11, 4.17)

Car type -1.01 (-1.61, -0.40) 0.62 (0.22, 1.02)

20 Confidence intervals and p-values for delivery to the end user

Table 5: Effects of weight and car type on fuel use in the auto data (using reshape)

Unadjusted effects: Adjusted effects:
Predictor Est. (95% CI) Est. (95% CI)

Weight (tons) 3.15 (2.70, 3.60) 3.64 (3.11, 4.17)
Car type -1.01 (-1.61, -0.40) 0.62 (0.22, 1.02)

5 Reconstructing factors using descsave and factext

In Figure 1, the confidence intervals are plotted, not against a numeric variable created
by using sencode on the variable label in a parmest output, but against a categorical
variable country, which was added to the original auto data. Categorical variables
are usually included in regression models using the xi package of official Stata (see
[R] xi) to create dummy indicator variables. However, such dummy indicator variables
may also be created using the official Stata command tabulate with the generate()
option (see [R] tabulate), or by John Hendrickx’s desmat package, introduced in Hen-
drickx (1999), updated in Hendrickx (2000), Hendrickx (2001a) and Hendrickx (2001b),
and downloadable in its latest version from SSC. Whichever package is used to create
dummy variables from a categorical variable, the original categorical variable can be
reconstructed in a parmest output data set using the descsave and factext packages,
downloadable from SSC.

The descsave package is an extended version of describe (see [R] describe), and
produces up to 2 output files. One of these is a Stata data set with 1 observation
per variable and data on the variable’s name, type, format, variable label, value label,
and (optionally) characteristics specified by the user (see [P] char). The other is a
Stata program file, which can be run to reconstruct all these variable attributes in a
data set in which a variable exists with the same name and mode (numeric or string).
Such a second data set might be created using the official Stata command insheet (see
[R] insheet), but may, alternatively, be a parmest output.

The factext package contains the programs factext, factref and factmerg, all
of which are intended for use in an output data set created using the label option
of parmest or parmby to generate the variable label mentioned in Table 2. If the
regression model fitted included dummy variables created by xi, tabulate or desmat,
then the labels of these dummy variables will typically be of the form

"categorical variable name==value"

and will be stored in the variable label, as will the labels of any other X-variables. The
factext program reads the labels from label and re-generates the original categori-
cal variables, optionally using a do-file created by descsave to reconstruct the names,
types, formats, variable labels, value labels and characteristics of these categorical vari-
ables. The factref program inserts extra observations with the reference values of

Roger Newson 21

categorical variables, which must be specified by the omit characteristic (see [R] xi and
[R] char). The factmerg program may be useful for creating string row label variables.
It “merges” a list of input categorical variables to create string variables containing,
in each observation, the name, label and string-mode value, respectively, of the first
variable in the input list to have a non-missing value in that observation. The reason
for the fact prefix in these program names is that the author used to work with the
packages GLIM and Genstat, originating from Rothamsted Experimental Station, UK,
and, in these packages, a categorical variable is known as a factor.

5.1 An example in the auto data

The program to create Figure 1 can now be revealed. Its log is as follows:

. * Plot graph of CIs for gp100m by country *

. preserve

. char country[omit] 1

. tempfile tf0

. descsave country, char(omit) do(‘tf0’)

storage display value
variable name type format label variable label

country byte %9.0g country Country of origin

. parmby "xi:regress gp100m i.country", float label ///
> format(estimate min* max* %8.2f) norestore
Command: xi:regress gp100m i.country
i.country _Icountry_1-6 (naturally coded; _Icountry_1 omitted)

Source SS df MS Number of obs = 74
F(5, 68) = 3.10

Model 22.2142794 5 4.44285589 Prob > F = 0.0139
Residual 97.3620073 68 1.43179423 R-squared = 0.1858

Adj R-squared = 0.1259
Total 119.576287 73 1.63803133 Root MSE = 1.1966

gp100m Coef. Std. Err. t P>|t| [95% Conf. Interval]

_Icountry_2 -1.172866 .4817432 -2.43 0.018 -2.134169 -.211562
_Icountry_3 -1.297032 .3971116 -3.27 0.002 -2.089455 -.5046077
_Icountry_4 .1763502 .8622248 0.20 0.839 -1.544193 1.896893
_Icountry_5 -.5562508 1.208027 -0.46 0.647 -2.966831 1.854329
_Icountry_6 .5641973 1.208027 0.47 0.642 -1.846383 2.974777

_cons 5.318156 .1659352 32.05 0.000 4.987037 5.649274

. factext country, do(‘tf0’)

. factref country, rzero(estimate min* max*)

. desc

Contains data from C:\WINDOWS\TEMP\ST_01000060.tmp
obs: 7
vars: 11 25 Jul 2003 14:37
size: 364 (99.9% of memory free)

storage display value
variable name type format label variable label

22 Confidence intervals and p-values for delivery to the end user

parmseq byte %12.0g Parameter sequence number
parm str11 %11s Parameter name
label str10 %10s Parameter label
estimate float %8.2f Parameter estimate
stderr float %10.0g SE of parameter estimate
dof byte %10.0g Degrees of freedom
t float %10.0g t-test statistic
p float %10.0g P-value
min95 float %8.2f Lower 95% confidence limit
max95 float %8.2f Upper 95% confidence limit
country byte %9.0g country Country of origin

Sorted by:
Note: dataset has changed since last saved

. list parm label country estimate min95 max95,clean

parm label country estimate min95 max95
1. US 0.00 0.00 0.00
2. _Icountry_2 country==2 Germany -1.17 -2.13 -0.21
3. _Icountry_3 country==3 Japan -1.30 -2.09 -0.50
4. _Icountry_4 country==4 France 0.18 -1.54 1.90
5. _Icountry_5 country==5 Italy -0.56 -2.97 1.85
6. _Icountry_6 country==6 Sweden 0.56 -1.85 2.97
7. _cons Constant . 5.32 4.99 5.65

. eclplot estimate min95 max95 country if parm != "_cons", hori ///
> estopts(msymbol(circle) msize(vlarge)) ciopts(msize(huge)) ///
> yscale(range(0 7)) ylabel(1(1)6) ///
> xlabel(-4(1)4,format(%8.0f)) xline(0, lpattern(dot)) ///
> xtitle("Difference in fuel use from US (gallons/100 miles)") ///
> xsize(4) ysize(3)

. graph export figseq1.eps, replace
(file figseq1.eps written in .eps format)

. more

. restore

We start in the auto data with the added variable country. We first set the omit
characteristic of country to 1 (US cars). We then use descsave with the do() option to
create a temporary do-file containing commands to reconstruct the variable attributes of
the variable country, including the omit characteristic (see [R] char and [R] xi). Then
we use parmby with the norestore and label options to run a regression model, using
xi to create dummy variables for country. This creates a parmest output data set in
memory, overwriting the pre-existing auto data. Using factext, we add to this data
set an additional variable country, using the temporary do-file created previously to
reconstruct the variable attributes of the variable of the same name in the pre-existing
data set. We then use factref to insert an extra observation in the data set with the
reference category value for country (as stored in the omit characteristic), and with
zero values for the variables listed in the rzero() option, and with missing values for
all other variables. The data set is then displayed, using describe and list to display
the variables and observations, respectively. Note that the variable label contains
"Constant" for the intercept, xi-format variable labels for parameters corresponding
to dummy variables, and a missing value for the reference-value observation for US-made
cars inserted by factref. Finally, we use eclplot and graph export (see [G] graph

Roger Newson 23

export) to create Figure 1 before restoring the pre-existing auto data to the memory.

6 Acknowledgements

I would like to thank Nicholas J. Cox for writing the hplot package, from which I
discovered a lot of the ideas behind the packages presented here, and which was my
usual package for graphing the confidence intervals from which I make my living, before
I had access to Stata 8. I would also like to thank Nicholas J. Cox and Jeremy Wernow
for writing tostring, Nicholas J. Cox and Patrick Joly for their helpful suggestions
on improvements for sencode, Jeff Pitblado for his helpful programming advice on
improving listtex, and Dan Blanchette, Nicholas J. Cox, William Gould, Ken Higbee,
Jeff Pitblado, Philip Ryan, Vince Wiggins, Nicholas Winter and Fred Wolfe for their
helpful suggestions and advice on improving and certifying the parmest package.

7 References
Cox, N. J. 2002. Speaking Stata: On numbers and strings. The Stata Journal 2(3):

314–329.

Cox, N. J. and J. Wernow. 2000a. dm80: Changing numeric variables to string. Stata
Technical Bulletin 56: 8–12. In Stata Technical Bulletin Reprints, vol. 10, 24–28.
College Station, TX: Stata Press.

—. 2000b. dm80.1: Update to changing numeric variables to string. Stata Technical
Bulletin 57: 2. In Stata Technical Bulletin Reprints, vol. 10, 28–29. College Station,
TX: Stata Press.

Hardin, J. 1995. dm29: Create TeX tables from data. Stata Technical Bulletin 25: 3–7.
In Stata Technical Bulletin Reprints, vol. 5, 20–25. College Station, TX: Stata Press.

Hendrickx, J. 1999. dm73: Using categorical variables in Stata. Stata Technical Bulletin
52: 2–8. In Stata Technical Bulletin Reprints, vol. 9, 51–59. College Station, TX: Stata
Press.

—. 2000. dm73.1: Contrasts for categorical variables: update. Stata Technical Bulletin
54: 7. In Stata Technical Bulletin Reprints, vol. 9, 60–61. College Station, TX: Stata
Press.

—. 2001a. dm73.2: Contrasts for categorical variables: update. Stata Technical Bulletin
59: 2–5. In Stata Technical Bulletin Reprints, vol. 10, 9–14. College Station, TX: Stata
Press.

—. 2001b. dm73.3: Contrasts for categorical variables: update. Stata Technical Bulletin
61: 5. In Stata Technical Bulletin Reprints, vol. 10, 14–15. College Station, TX: Stata
Press.

24 Confidence intervals and p-values for delivery to the end user

Newson, R. 1999. dm65: A program for saving a model fit as a dataset. Stata Technical
Bulletin 49: 2–5. In Stata Technical Bulletin Reprints, vol. 9, 19–23. College Station,
TX: Stata Press.

—. 2000. dm65.1: Update to a program for saving a model fit as a dataset. Stata
Technical Bulletin 58: 2. In Stata Technical Bulletin Reprints, vol. 10, 7. College
Station, TX: Stata Press.

—. 2002. Parameters behind ”nonparametric” statistics: Kendall’s tau, Somers’ D and
median differences. The Stata Journal 2(1): 45–64.

Weesie, J. 1997. dm48: An enhancement of reshape. Stata Technical Bulletin 38: 2–4.
In Stata Technical Bulletin Reprints, vol. 7, 40–43. College Station, TX: Stata Press.

Wiener, N. 1988. The Human Use of Human Beings: Cybernetics and Society. 2d ed.
Cambridge, MA: DaCapo Press.

About the Author

Roger Newson is a Lecturer in Medical Statistics at King’s College London, UK, working pri-

marily in asthma research. He wrote the unofficial Stata packages eclplot, listtex, parmest,

dsconcat, lincomest, sencode, ingap, descsave and factext, presented here.

