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Abstract.

The smileplot package is downloadable from SSC, and contains the programs
multproc and smileplot. multproc carries out multiple test procedures, taking
as input a list of P -values and an uncorrected critical P -value, and calculating
a corrected overall critical P -value for rejection of null hypotheses. These pro-
cedures define a confidence region for a set-valued parameter, namely the set of
null hypotheses that are true. They aim to control either the family-wise error
rate (FWER) or the false discovery rate (FDR) at a level no greater than the
uncorrected critical P -value. smileplot calls multproc and then creates a smile
plot, with data points corresponding to estimated parameters, the P -values (on a
reverse log scale) on the Y -axis, and the parameter estimates (or another variable)
on the X-axis. There are Y -axis reference lines at the uncorrected and corrected
overall critical P -values. The reference line for the corrected overall critical P -
value, known as the parapet line, is an informal “upper confidence limit” for the
set of null hypotheses that are true, and defines a boundary between data mining
and data dredging. A smile plot summarizes a set of multiple analyses just as a
Cochrane forest plot summarizes a meta-analysis.

Keywords: notag1, smile plot, multiple test procedure, closed testing procedure,
data mining, family-wise error rate, false discovery rate, Bonferroni, Šidák, Holm,
Holland, Copenhaver, Hochberg, Rom, Simes, Benjamini, Yekutieli, Krieger, Liu.

1 Introduction

A P -value is defined (informally) as the probability of observing a sample difference
at least as large as the one in our sample, assuming that the population difference
is zero. However, if we either take a large number of samples, or calculate a large
number of confidence intervals for different parameters using the same sample, then the
probability of not observing at least one “significant” difference tends to fall, even if all
null hypotheses are true, and all population differences are zero. A skeptical public will
inevitably ask whether a reported difference is “significant” when considered as one out
of a large number of parameters estimated.

Common responses to this problem use the Bonferroni or Šidák inequalities. If
P1, . . . , Pm are observed P -values, and α is a critical P -value, then the Bonferroni
inequality states that

Pr [min (Pj : 1 ≤ j ≤ m ) ≤ α/m] ≤ α. (1)

The Šidák inequality (Šidák, 1967) is less conservative, and applies whenever the events
of Type I error for different tests are mutually non-negatively correlated, which is the
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case if the Pj are derived from two-tailed tests based on Normally distributed test
statistics. It states that

Pr
[
min (Pj : 1 ≤ j ≤ m ) ≤ 1− (1− α)1/m

]
≤ α. (2)

Most statistically-minded scientists view P -values as a means to the end of defining con-
fidence intervals or other confidence regions. If there are m parameters θ = (θ1, . . . , θm),
then we may derive 100(1 − α/m)% confidence intervals (thanks to the Bonferroni in-
equality) or 100(1 − α)1/m% confidence intervals (thanks to the Šidák inequality) for
each of the θi, and the Cartesian product of these confidence intervals is a conserva-
tive rectangular confidence region for θ. In other words, we are 100(1− α)% confident
that all the θi are inside their respective confidence limits. The method of rectangular
confidence regions is summarised in Miller (1966) and in Šidák (1967). It is not easy
to calculate 100(1 − α/m)% or 100(1 − α)1/m% confidence intervals in official Stata,
which requires the level option of an estimation command to be an integer. A possible
solution to this problem is to use the parmest package (Newson, 1999), which is down-
loadable from SSC, and which now allows the calculation of multiple pairs of confidence
limits with possibly non-integer confidence levels.

Most scientists, most of the time, do not use corrected confidence intervals of this
kind. It is more common to use multiple test procedures, which reject a subset of the
null hypotheses, and enable us to be 100(1 − α)% confident that all, or some, of the
rejected null hypotheses are false. This is often more concise, and less conservative,
than giving a full list of corrected confidence limits. Also, confidence interval formulae
may be less reliable at confidence levels in excess of 99.5% than at confidence levels of
95%.

Multiple test procedures, on their own, have the disadvantage that they give infor-
mation only about the statistical significance of results, as measured by the P -values,
and say nothing about their practical significance in affecting practical decisions, as
measured by the parameter estimates. Also, the results are not often expressed graphi-
cally. It would be useful to have a plot which summarized a set of multiple analyses just
as a Cochrane forest plot summarizes a meta-analysis, giving quantitative information,
at a glance, about the statistical and practical significance of the estimated parameters.
To create such a plot, we developed the smileplot package, which carries out multiple
test procedures and, optionally, plots the P -values on a reverse log scale against the cor-
responding parameter estimates, with a reference line (the parapet line) separating the
rejected P -values from the acceptable P -values. The parapet line is so named because,
informally, null hypotheses that raise their heads above it are shot down.
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2 The smileplot package

2.1 syntax

multproc
[
if exp

] [
in range

] [
, puncor( { # | scalarname | varname } )

pcor( { # | scalarname | varname } ) method(method name)

pvalue(varname) rank(newvarname) gpuncor(newvarname)

critical(newvarname) gpcor(newvarname) nhcred(newvarname)

reject(newvarname) float fast
]

smileplot
[
if exp

] [
in range

] [
, estimate(varname) logbase(#)

maxylabs(#) xlog nline(#) ptsymbol(symbolstyle) ptlabel(varname)

scatteropts(scatter options) refopts(added line options 1)

nrefopts(added line options 2) urefopts(added line options 3)

crefopts(added line options 4) plot(plot) by(varlist
[
,suboptions

]
)

multproc options twoway options
]

method name may be one of a selection of method names (see below).

multproc options is a set of options recognised by the multproc command.

twoway options is a set of options recognised by the graph twoway command; see
[G] twoway options.

by . . .: may be used with multproc and smileplot; see [R] by.

2.2 Description

multproc takes, as input, a data set with one observation for each of a set of mul-
tiple statistical tests, including a variable containing P -values for these tests, and an
uncorrected overall critical P -value specified by the user, and carries out a multiple
test procedure. This procedure calculates a corrected overall critical P -value, which
has the feature that an individual null hypothesis is considered to be acceptable if and
only if its corresponding P -value is greater than the corrected overall critical P -value.
smileplot takes, as input, a data set with one observation for each of a set of estimated
parameters, and data on their estimates and P -values. smileplot calls multproc to
carry out a multiple test procedure, and then creates a smile plot, with data points
corresponding to estimated parameters, the P -values (on a reverse log scale) on the
Y -axis, and the parameter estimates (or another variable) on the X-axis. There are
Y -axis reference lines at the uncorrected and corrected overall critical P -values. The
Y -axis reference line at the corrected overall critical P -value is known as the parapet
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line, and data points on or above it correspond to rejected null hypotheses. There may
be an X-axis reference line at the value of a parameter under a null hypothesis (de-
faulting to one if the X-axis is logged, or to zero otherwise). The user can therefore
see, at a glance, both the statistical significance and the practical significance of each
parameter estimate. Data sets suitable for input to multproc and smileplot may be
created (directly or indirectly) by statsby or postfile (in official Stata) or by the
parmest package previously mentioned (downloadable from SSC).

smileplot changed markedly in style in the transition from Stata Version 7 to
Stata Version 8. Users who prefer to use the Stata 7 version can still do so by using the
program smileplot7, which is distributed as part of the smileplot package.

2.3 Options for multproc and smileplot

puncor( { # | scalarname | varname } ) specifies the uncorrected overall critical
P -value for statistical significance. This option may be specified either as a number,
or as a scalar, or as a variable (in which case the variable is expected to contain only
one non-missing value in the sample, or one non-missing value in each by-group if by
varlist: is used). If absent, this option is set to 1-$S level/100, where $S level
is the value of the currently set default confidence level (see [R] level).

pcor( { # | scalarname | varname } ) specifies the corrected overall critical P -
value for statistical significance. This option may be specified either as a number, or
as a scalar, or as a variable (in which case the variable is expected to contain only
one non-missing value in the sample, or one non-missing value in each by-group if by
varlist: is used). If absent, this option is set by the method specified in the method
option (see below).

method(method name) specifies the multiple test procedure method to be used for de-
riving the corrected P -value threshold from the uncorrected P -value threshold. This
option is ignored, and set to userspecified, if the pcor option is specified and in
the range 0 ≤ pcor ≤ 1. Otherwise, if method is absent, then it is set to bonferroni.

pvalue(varname) is the name of the variable containing the P -values. If this option
is absent, then multproc looks for a variable named p (as created by parmby or
parmest). multproc carries out a multiple test procedure on all observations selected
by the if and/or in qualifiers which also have non-missing values for the variable
containing the P -values.

rank(newvarname) is the name of a new variable to be generated, containing, in each
observation, the rank of the corresponding P -value, from the lowest to the highest.
Tied P -values are ranked according to their position in the input data set. If by
varlist: is specified, then the ranks are defined within the by-group.

gpuncor(newvarname) is the name of a new variable to be generated, containing, in
each observation, the uncorrected overall critical P -value, as specified by the puncor
option, or by the standard default if the puncor option is not specified. This new
variable will have the same value for all observations in the sample of observations
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used by multproc or smileplot. If by varlist: is specified, then the value of this
new variable will be the same in all observations within each by-group, but may be
different for observations in different by-groups, if the puncor option is specified as
a variable with different values in different by-groups.

critical(newvarname) is the name of a new variable to be generated, containing, in
each observation, an individual critical P -value corresponding to the original P -value
in the variable specified by pvalue. The values of the individual critical P -values
are defined by a non-decreasing function (specified by the method option) of the
ranks of the corresponding original P -values (generated by the rank option). The
corrected overall critical P -value is selected from the individual critical P -values in
a way specified by the method option, depending on whether the method specified
is a one-step method, a step-down method, or a step-up method.

gpcor(newvarname) is the name of a new variable to be generated, containing, in each
observation, the corrected overall critical P -value, as specified by the pcor option, or
by the method option if the pcor option is not specified. If by varlist: is specified,
then the value of this new variable will be the same in all observations within each
by-group, but may be different for observations in different by-groups.

nhcred(newvarname) is the name of a new variable to be generated, containing, in
each observation, an indicator of the credibility of the corresponding null hypothesis
under the method specified by the method option. This indicator is 1 if the null
hypothesis is acceptable, and 0 otherwise. A null hypothesis is said to be acceptable
if its P -value is greater than the corrected overall P -value threshold. The set of
observations with a value of 1 corresponds to a set of acceptable null hypotheses. The
exact interpretation of the set of acceptable null hypotheses depends on whether the
method specified controls the family-wise error rate (FWER) or the false discovery
rate (FDR).

reject(newvarname) is the name of a new variable to be generated, containing, for
each observation, an indicator of the rejection of the corresponding null hypothesis
under the method specified by the method option. This indicator is 1 if the null
hypothesis is rejected, and 0 otherwise. The new variable generated by the reject
option is therefore the negation of the new variable generated by the nhcred option.

float specifies that the generated P -value variables specified by gpuncor, critical
and gpcor (if requested) will be created as float variables. If float is absent, then
these generated variables are created as double variables. Whether or not float is
specified, all generated variables are stored to the lowest precision possible without
loss of information.

fast is an option for programmers. It specifies that multproc and smileplot will not
take any action to restore the original data if the user presses Break.
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2.4 Options for smileplot only

estimate(varname) specifies the name of the variable to be plotted on the X-axis,
usually containing the parameter estimates. If this option is absent, then smileplot
looks for a variable named estimate (as created by parmby or parmest). smileplot
carries out a multiple test procedure by calling multproc for observations with non-
missing values for the variables specified by the estimate and pvalue options, using
the if and/or in qualifiers if these are supplied by the user. Note that the variable
specified by estimate may contain values that are not parameter estimates. For
instance, the observations may correspond to genes in a genome scan, the P -values
may be derived from tests for associations of those genes with a disease, and the
X-axis variable specified by estimate may contain the positions of those genes on
a chromosome map.

logbase(#) specifies a log base used to define the Y -axis labels. This log base is a
factor by which each Y -axis label is divided to arrive at the next Y -axis label, where
the Y -axis labels are ordered from the highest P -value to the lowest P -value. If
absent, this option is set to 10, so the Y -axis labels are set to non-positive powers of
10. If this rule defines too many Y -axis labels, then the Y -axis labels are set to be
every kth member of the logarithmic series, where k is the minimum positive integer
such that the number of Y -axis labels defined in this way is not too large.

maxylabs(#) specifies the maximum number of Y -axis labels allowed. If this option
is not specified, then it is set to 25, so as to be similar to the Stata 7 version of
smileplot, which the user can still use by using smileplot7. maxylabs is used
with logbase to decide the default sequence of labels on the left Y -axis. These
are chosen to be spaced exponentially, separated by a factor equal to the smallest
possible power of logbase such that the number of labels is no more than maxylabs.
This is usually a sensible default, but it can be overridden by the twoway options.

xlog specifies that the X-axis must have a log scale. It is typically used if the parameters
estimated are odds ratios or geometric mean ratios. It affects the default value of
the nline option (see below). It may be overridden by specifications in an xscale
option in the twoway options.

nline(#) specifies the position, on the X-axis, of the reference line indicating the value
of the estimated parameters under the null hypothesis. If unspecified, this option is
set to 1 if xlog is specified and to 0 otherwise. This option allows the user to plot
odds ratios and geometric mean ratios on a linear scale instead of the more usual
log scale. If nline is set to a missing value by specifying nline(.), then the null
reference line is suppressed. This is useful for creating “smile plots” in which the X-
axis variable specified by the estimate option contains values other than parameter
estimates, such as positions of genes on a chromosome map.

ptsymbol(symbolstyle) specifies a graph symbol for the data points of the smile plot
(see [G] symbolstyle). If absent, it is set to Th (hollow triangles).

ptlabel(varname) specifies a variable to be used to label the data points. If this option
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is absent, then there are no data point labels, only unlabelled data points.

scatteropts(scatter options) specifies a sequence of options for the twoway scatter
plot type. These options may include msymbol and mlabel options, which over-
ride the ptsymbol and ptlabel options, respectively, and other options specifying
non-default attributes for the symbols and/or labels, such as size and color. (See
[G] graph twoway scatter.) The user may specify any of these options except for
xaxis or yaxis, because smileplot automatically sets the first X-axis to be the
X-axis of the smile plot (specified by the estimate option) and the first and second
Y -axes to be the left and right Y -axes used by the smile plot (corresponding to the
pvalue option). The second Y -axis is used to display the values of the uncorrected
and corrected overall critical P -values.

refopts(added line options 1) specifies a list of added line suboptions, as allowed for
the xline or yline options (see [G] added line options). These suboptions control
the style of the X-axis and Y -axis reference lines of the smile plot, corresponding
to the null hypothesis, the uncorrected overall critical P -value, and the corrected
overall critical P -value, respectively. The suboptions apply to all 3 of these reference
lines, except if overridden by the nrefopts, urefopts and/or crefopts options (see
below). If refopts is absent, then the lines have a style depending on the scheme.

nrefopts(added line options 2) specifies a list of added line suboptions, which control
the style of the X-axis reference line of the smile plot, corresponding to the null
hypothesis.

urefopts(added line options 3) specifies a list of added line suboptions, which control
the style of the Y -axis reference line of the smile plot indicating the uncorrected
overall critical P -value.

crefopts(added line options 4) specifies a list of added line suboptions, which control
the style of the Y -axis reference line of the smile plot indicating the corrected overall
critical P-value.

plot(plot) provides a way to add other plots to the generated graph. See [G] plot option.

by(varlist
[
,suboptions

]
) is a graph twoway option, and works as in [G] by option, cre-

ating one subplot for each by-group, arranged in an array as specified by the user.
The corrected overall critical P -value, indicated by a line at the same level on all the
subplots, is calculated from all the P -values from all the by-groups pooled together,
not for the subset of P -values in each by-group individually. (This is in contrast to
the use of by varlist:, which causes corrected individual and overall critical P -values
to be calculated only from the subset of P -values in each by-group.)

2.5 Saved results

multproc and smileplot save the following results in r():
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Scalars
r(puncor) Uncorrected critical P -value r(pcor) Corrected critical P -value
r(npvalues) Number of P -values r(nreject) Number of P -values rejected

Macros
r(method) The method option

3 Methods and formulas

We assume that there is a sequence of m distinct parameters θ1, . . . , θm, estimated
using estimates θ̂1, . . . , θ̂m, and having the values θ

(0)
1 , . . . , θ

(0)
m under their respective

null hypotheses. Typically, θ
(0)
i is 0 for difference parameters such as linear regression

coefficients, or 1 for ratio parameters such as relative risks. Denote by P1, . . . , Pm the
observed P -values for testing the m null hypotheses. Each Pi has the property that, if
0 ≤ α ≤ 1,

Pr
(

Pi ≤ α
∣∣ θi = θ

(0)
i

)
≤ α. (3)

Denote by R1, . . . , Rm the ranks (in ascending order) of P1, . . . , Pm, and denote by
Q1, . . . , Qm the P -values in ascending order, so that, for each i, QRi = Pi. multproc
aims to define a “credible (or acceptable) subset” of indices C ⊆ {1 . . .m}, such that
the null hypotheses {θi = θ

(0)
i : i ∈ C} are acceptable, and the complementary set of

null hypotheses {θi = θ
(0)
i : i /∈ C} are rejected. This is done by defining an uncorrected

P -value threshold punc, calculating a corrected P -value threshold pcor from punc and
Q1, . . . , Qm, and defining the acceptable subset C to be the subset of indices i such
that Pi > pcor. The output variable generated by the nhcred option has values of 1 for
indices in C and 0 for indices not in C. Conversely, the output variable generated by
the reject option has values of 0 for indices in C and 1 for indices not in C.

smileplot calls multproc, and then plots the θ̂i (or another variable) on the X-
axis against the corresponding Pi on the Y -axis on a reverse log scale, so that the
higher a data point is, the more statistically significant it is. The Y -axis reference lines
correspond to punc and pcor, and the X-axis reference line corresponds to an assumed
common value of θ

(0)
i for all i, set by the nline option. The smile plot is so named

because, if the standard errors of the various θ̂i are similar, then the data points lie
around a smile-shaped line. The higher the corners of the smile, the more reason the
investigators have to be happy.

The method for calculating the corrected P -value threshold pcor is specified by the
method option. The methods available are listed in Table 1, and may be classified in
three ways:

• By the form of the algorithm used to calculate the corrected P -value pcor. The
three forms (or step types) are one-step, step-down and step-up.

• By the interpretation of the uncorrected overall critical P -value punc. This may be
an upper bound for the family-wise error rate (FWER) or for the false discovery
rate (FDR).
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Table 1: Multiple test procedures specified by the method option of multproc.
method Step type FWER/FDR Correlation assumed
userspecified One-step User-specified User-specified
bonferroni One-step FWER Arbitrary
sidak One-step FWER Non-negative
holm Step-down FWER Arbitrary
holland Step-down FWER Non-negative
liu1 Step-down FDR Non-negative
liu2 Step-down FDR Arbitrary
hochberg Step-up FWER Independence
rom Step-up FWER Independence
simes Step-up FDR Non-negative
yekutieli Step-up FDR Arbitrary
krieger Step-up FDR Independence

• By the correlation assumed between the Pi. A method may assume independence,
non-negative correlation, or arbitrary correlation.

The remaining sub-sections of this section explain the three modes of classification
and present the formulas.

3.1 Formulas for one-step, step-down and step-up methods

Each method works by specifying a non-decreasing sequence of individual critical P -
values c1, . . . , cm, corresponding to the ordered P -values Q1, . . . , Qm. These ci can be
output by the critical option. Once these ci have been specified, a method selects an
overall corrected critical P -value pcor from the ci in one of three ways:

• One-step: The ci are all equal to a common value pcor, defined by a rule not
dependent on i.

• Step-down: pcor is set to the minimum ci such that Qi > ci, if such a ci exists,
and to the maximum critical P -value cm otherwise.

• Step-up: pcor is set to the maximum ci such that Qi ≤ ci, if such a ci exists, and
to the minimum critical P -value c1 otherwise.

Therefore, a one-step procedure subjects all the Qi to the same “significance hurdle”;
a step-down procedure subjects the Qi in ascending order to increasingly easy “hurdles”
until the first one fails; and a step-up procedure subjects the Qi in descending order to
increasingly difficult “hurdles” until the first one succeeds. Different methods of each
of the three step types differ by the methods for specifying the ci. The rules, together
with references justifying them, are as follows:
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One-step methods

1. userspecified.
ci = pcor, (4)

where pcor is specified by the user as the pcor option.

2. bonferroni.
ci = pcor = punc/m. (5)

3. sidak (Šidák, 1967).
ci = pcor = 1− (1− punc)1/m. (6)

Step-down methods

1. holm (Holm, 1979).
ci = punc/(m− i + 1). (7)

2. holland (Holland and Copenhaver, 1987).

ci = 1− (1− punc)1/(m−i+1). (8)

Note that the Holland-Copenhaver procedure used by multproc is the simplified
version of the procedure in the original reference, which also specifies a more
complicated version of the procedure, using logical dependencies between the null
hypotheses.

3. liu1 (Benjamini and Liu, 1999a; Sarkar, 2002).

ci = 1 −
[

1 − min
(

1 ,
m

m− i + 1
punc

)]1/(m−i+1)

. (9)

4. liu2 (Benjamini and Liu, 1999b).

ci = min
(

1 ,
m

(m− i + 1)2
punc

)
. (10)

Note that the two Benjamini-Liu methods can, in principle, yield corrected P -
values up to and including 1, and therefore greater than the uncorrected P -value.

Step-up methods

1. hochberg (Hochberg, 1988).

ci = punc/(m− i + 1). (11)

Note that the ci are the same as those for the step-down Holm procedure.
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2. rom (Rom, 1990).

The ci are defined by “backwards recursion”, starting with cm and defining the
other ci in terms of the ck for k > i:

ci =

{
punc, if i = m,
(m− i + 1)−1

[∑m−i
j=1 cj

m −∑m−i
j=2

(
m−i+1

j

)
cj
i+j−1

]
, if i < m. (12)

3. simes (Simes, 1986; Benjamini and Hochberg, 1995; Benjamini and Yekutieli,
2001, first method).

ci =
i

m
punc. (13)

4. yekutieli (Benjamini and Yekutieli, 2001, second method).

ci =
i

m
∑m

j=1 j−1
punc. (14)

5. krieger (Benjamini, Krieger and Yekutieli, 2001).

ci =
i

m̂0

punc

(punc + 1)
, (15)

where m̂0 is the number of acceptable null hypotheses calculated by substituting
punc/(punc + 1) for punc in the simes method. The krieger method is therefore a
two-stage method, where the first stage involves using a modified simes method
to calculate m̂0 as an estimate of the number of true null hypotheses, and the
second stage involves using a further-modified simes method to calculate the ci.

3.2 FWER-controlling and FDR-controlling procedures

Traditionally, when scientists carry out multiple tests and wish to define an “upper
bound” to the set of null hypotheses that are true, they control the family-wise error
rate (FWER), defined as the probability that at least one true null hypothesis is rejected.
If the uncorrected P -value threshold is punc, then the corrected P -value threshold pcor

is chosen so that, if a subset of null hypotheses θi = θ
(0)
i is true, then the probability

of at least one of the corresponding observed Pi being equal to or less than pcor is no
greater than punc. In practice, procedures controlling the FWER usually err on the
side of conservatism, so that the true FWER is less than punc. In general, a FWER-
controlling procedure defines a conservative 100(1− punc)% confidence region for a set-
valued parameter, namely the set of null hypotheses that are true. This confidence
region is a set of subsets of null hypotheses. Usually (but not always), this confidence
region is the power set of a set of credible or acceptable null hypotheses. In this case,
we are 100(1 − punc)% confident that the set of true null hypotheses is some subset
(possibly empty) of the acceptable set. The FWER-controlling procedures implemented
in multproc all generate confidence regions that are power sets of an acceptable set,
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which can be specified by the new variable generated by the nhcred option. Whether
or not the confidence region is a power set, it usually has the hereditary property,
which is to say that, if a subset of null hypotheses is in the confidence region, then
any subset of that subset is also in the confidence region. Multiple test procedures
generating confidence regions with the hereditary property are closed testing procedures,
as discussed in Marcus, Peritz and Gabriel (1976) and in Wright (1992). A more recent
textbook on traditional 20th century approaches to multiple comparisons is Hsu (1996).

Multiple test procedures controlling the FWER have the disadvantage that they are
often very conservative, leading to low power to detect real differences. Worse still,
the power is lost progressively, and tends to 0 for detection of true population differ-
ences of any given size, as the number of estimated parameters increases. If we use a
FWER-controlling procedure on two disjoint sets of measured parameters, and then use
the same FWER-controlling procedure on the union of the two sets, then the critical
corrected P -value for the union will nearly always be lower than the critical P -values
for either of the two component sets. This is because the corrected critical P -value
is approximately inversely proportional to the number of measured parameters, or ex-
actly inversely proportional in the case of the Bonferroni procedure. It follows that,
with FWER-controlling procedures, it is possible to combine several apparently pro-
ductive data mining expeditions to form a single apparently unproductive data mining
expedition.

Benjamini and Hochberg (1995) proposed to remedy this difficulty by using less
conservative multiple test procedures, which control the false discovery rate (FDR)
instead of the FWER. FDR-controlling procedures have the advantage of detecting
more differences as “significant”, at the price of being 100(1 − punc)% confident that
some of these differences are real, instead of being 100(1− punc)% confident that all of
these differences are real. If we denote by R the number of null hypotheses rejected
by a multiple test procedure, denote by V the number of these rejected null hypotheses
which are in fact true, and define

Q =
{ V/R, if R > 0,

0, if R = 0, (16)

then the FDR is defined as the expectation E(Q). If all the null hypotheses are true, then
the FDR is the FWER. At the other extreme, if the number of measured parameters
θi is large, and a large proportion of them are appreciably different from the null-
hypothesis values θ

(0)
i , then the probability that R = 0 will be very small, and 1− FDR

will approximate to the expectation of the positive predictive power. (The positive
predictive power is here defined as the proportion of rejected null hypotheses that are
in fact false, equal to 1 − Q if R 6= 0.) If we use multproc with a FDR-controlling
procedure such as the simes method, then the FDR will be no more than the value
punc given by the puncor option. FDR-controlling procedures are (rightly or wrongly)
a fashionable area of statistics at present, and new methods are being developed all
the time. A good place to follow recent developments is Yoav Benjamini’s website at
http://www.math.tau.ac.il/̃ ybenja/.

The quantity Q has the attractive property that, if we combine two disjoint sets
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of measured parameters into one combined set, then the value of Q for the combined
set will be a mean of the values of Q for the component sets, weighted by the values
of R for the component sets, provided that the component R-values are both positive.
Therefore, if we use 1−Q as a measure of productivity of a data mining expedition (in
terms of true discoveries per false discovery), then a union of multiple productive data
mining expeditions will be a single large productive data mining expedition.

The interpretation of the FDR is still controversial. However, one possible inter-
pretation, in terms of confidence levels, is as follows. If 0 < γ ≤ 1, then we have the
inequality

Pr(Q ≥ γ) ≤ E(Q)/γ = FDR/γ, (17)

and therefore
Pr(Q < γ) = 1− Pr(Q ≥ γ) ≥ 1− FDR/γ. (18)

Therefore, if FDR ≤ punc, then we can be 100(1 − punc/γ)% confident that Q will be
strictly less than γ. In other words, if we control the FDR at punc = βγ, then we can
be 100(1 − β)% confident that over 100(1 − γ)% of any rejected null hypotheses will
be false. In particular, if we choose γ = 1, then we can be 100(1 − punc)% confident
that Q < 1, or, in other words, that, if any null hypotheses are rejected, then at least
some of these rejected null hypotheses will be false. For instance, if we set punc = 0.05,
then we can choose γ = 1 and β = 0.05 and be 95% confident that at least some of any
detected differences will be real, or choose γ = 0.5 and β = 0.1 and be 90% confident
that over half of any detected differences will be real. Alternatively, if we set β = 0.05,
γ = 0.05 and punc = 0.05× 0.05 = 0.0025, then we can be 95% confident that over 95%
of any detected differences will be real.

The FDR, like the FWER, can be used for generating confidence regions for a set-
valued parameter, namely the set of null hypotheses that are true. Given a set of
rejected null hypotheses, a confidence region for the set of true null hypotheses can be
defined as follows. If we choose γ = 1, then the confidence region is the set of all subsets
of null hypotheses which do not contain the rejected set as a non-empty subset. If we
choose any other γ, then the confidence region is the set of all subsets of null hypotheses
which do not contain at least 100γ percent of the rejected set as a non-empty subset.
These confidence regions are not power sets, but have the hereditary property, so FDR-
controlling procedures are closed testing procedures. In particular, the empty set is
always in the confidence region, because it is impossible to prove a null hypothesis.

FDR-controlling procedures typically have more power to detect real differences than
FWER-controlling procedures with the same value of punc, especially if the number
m of measured parameters is large. The price of this increased power is that FDR-
controlling procedures typically have a larger proportion of false discoveries than FWER-
controlling procedures with the same value of punc. This is because, instead of aiming
for the perfectionist goal of no false discoveries, a FDR-controlling procedure aims to
control the number of false discoveries to an acceptable proportion of the number of true
discoveries. It is not usually clear which of the discoveries are false, or even how many
of the discoveries are false, because the FDR is the expectation of Q, not a deterministic
value of Q. If the number of measured parameters is extremely large, and a fairly large
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number of null hypotheses is expected to be rejected, and the joint sampling distribution
of the P -values is not highly correlated, then some kind of consistency law might apply
to R and Q, making Q very close to the FDR. In this case, we could therefore be
100% confident that at least 100(1−punc)% of detected differences are real, rather than
being 100(1− punc)% confident that at least some of the differences are real. This ideal
situation might be expected to hold if the set of multiple parameters measured is the
total statistical output of a productive scientist over the scientist’s career, or even the
total statistical output of a community of scientists over a year. However, a typical
scientific report might feature only a few tens or hundreds of measured parameters,
of which the number of detected differences might be in single figures, or low double
figures. In this case, the proportion of these detected differences that are false will not
necessarily be bounded above by the FDR, even if we use a FDR-controlling procedure.

A further caution about the interpretation of the FDR arises from the fact that R
may be 0. Zaykin, Young and Westfall (2000) raised this caution in response to Weller et
al. (1998), who advocated the use of FDR-controlling procedures in genomic analyses.
By (16), the value of Q is 0 by definition if no null hypotheses are rejected. The FDR
can therefore be expressed as

FDR = Pr(R = 0)E(Q|R = 0) + Pr(R > 0)E(Q|R > 0) = Pr(R > 0)E(Q|R > 0),
(19)

where 1−E(Q|R > 0) is the conditional mean of the positive predictive power, given that
some null hypotheses are rejected. It follows that the conditional mean proportion of
false discoveries, given that there are any discoveries at all, is greater than the advertised
FDR by a factor of 1/Pr(R > 0). This is not much of a problem if this factor is very close
to 1, as it will be if the number of measured parameters is large and a sizeable proportion
of the differences measured have a high probability of being detected. However, if the
number of differences detected by a FDR-controlling procedure is only 1 or 2, then the
conditional mean proportion of these that are spurious might be appreciably more than
the advertised FDR.

For all the above reasons, the interpretation of results from FDR-controlling proce-
dures remains controversial. However, new FDR-controlling procedures continue to be
developed and tested, with the result that this area of statistics is in a state of flux. For-
tunately, multproc incorporates a wide choice of procedures, and new ones can easily
be added as required. We might expect FDR-controlling procedures to be most useful in
large-scale data mining expeditions where the prior probability that R = 0 is very low.
It is worth mentioning that Sterne, Davey Smith and Cox (2001) recently calculated
that the positive predictive power of published discoveries in the field of epidemiology
might plausibly be as low as 0.53, corresponding to a FDR as high as 0.47. (This positive
predictive power was derived using Bayes’ theorem, assuming a probability of 90% that
a tested null hypothesis is true, a typical study power of 50%, and a confidence level
of 95%.) This suggests that, in epidemiological papers with large tables of results, the
rate of “false alarms” might possibly be lowered if it became customary to use multiple
test procedures controlling the FDR at a lower level than 0.47.
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3.3 Correlation between multiple P -values

The choice of a multiple test procedure is also affected by assumptions about the joint
sampling distribution of the individual P -values Pi, at least for those Pi that test true
null hypotheses. Typically, negatively-correlated P -values require a more conservative
procedure than independent P -values, which in turn require a more conservative pro-
cedure than positively-correlated P -values. This is because the event of at least one of
several P -values falling below a critical level is more probable if they tend to fall below
a critical level in different samples than if they fall below a critical level independently,
and more probable if they fall below a critical level independently than if they tend
to fall below a critical level in the same samples. Therefore, other things being equal,
procedures allowing arbitrary correlation are more conservative than procedures assum-
ing independence or non-negative correlation. These points are discussed rigorously by
Šidák (1967) and Benjamini and Yekutieli (2001).

Methods assuming independence are appropriate if the P -values are calculated from
independent sets of data. Methods assuming non-negative correlation are appropriate
if the P -values are from two-tailed tests using test statistics with a joint multivariate
normal distribution or a joint multivariate t-distribution. Therefore, if it is appropriate
to calculate confidence intervals and P -values using Stata estimation commands (which
use standard errors calculated from an estimated dispersion matrix), then it is appropri-
ate to use methods which assume non-negative correlation. Methods allowing arbitrary
correlation are appropriate if it is possible for different P -values testing true null hy-
potheses to be negatively correlated, so that different tests tend to produce spuriously
significant results in different samples. This might happen if the data points are pa-
tients with or without a disease, the sample size is small, and the multiple P -values are
from multiple Fisher’s exact tests for association between the disease and membership
of multiple mutually exclusive categories (such as genotypes). It might also happen if
the P -values are from one-tailed tests.

4 Examples

4.1 Oily fish consumption and fatty acids in red blood cells

The Avon Longitudinal Study of Parents and Children (ALSPAC) is a multi-purpose
birth cohort study based at Bristol University, England, involving over 14,000 preg-
nancies in the Avon area of England in the early 1990s, the children from which have
been followed through childhood. For further information, refer to the study website at
http://www.alspac.bris.ac.uk. At 32 weeks gestation, mothers were asked to complete a
food frequency questionnaire (FFQ), asking about current consumption levels of a wide
range of foods. Blood samples were taken from the mothers one or more times during
pregnancy, and from the umbilical cord at birth, and the fatty acid composition of the
cell membranes of the red blood cells (RBCs) was analysed by measuring amounts of
40 fatty acids as a percent of total cell membrane fatty acid.

One FFQ question asked about current consumption of oily fish (e.g. pilchards,
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sardines, mackerel, tuna, herring, trout or salmon) on an ordinal categorical scale
(never/rarely, once per fortnight, 1-3 times per week or over 3 times per week). Correla-
tions between oily fish consumption and RBC fatty acid percentages were assessed using
Somers’ D (clustered by pregnancy), which is discussed in detail in Newson (2002) and
calculated using the somersd package (downloadable from SSC). Somers’ D is here the
difference between the probability that a randomly-chosen blood sample from a higher
fish consumer has a higher level of the specified fatty acid than a randomly-chosen blood
sample from a lower fish consumer and the probability that a randomly-chosen blood
sample from a lower fish consumer has a higher level of the specified fatty acid than
a randomly-chosen blood sample from a higher fish consumer. Therefore, Somers’ D
measures ordinal correlation on a scale from −1 to 1. 4720 mothers had data on both
fish consumption and maternal blood fatty acids, contributing a total of 7159 mater-
nal blood samples, whereas 1733 mothers had data on both fish consumption and cord
blood fatty acids, contributing a total of 1753 cord blood samples. The Somers’ D es-
timates and their P -values were output, using the parmest package (mentioned earlier
and downloadable from SSC), to a Stata data set with one observation per measured
Somers’ D parameter. This data set contained a variable somd, containing Somers’ D
estimates, a variable p, containing the corresponding P -values, and a variable fa, con-
taining an identifying label for the particular fatty acid involved. These variables were
then plotted using smileplot. For maternal blood, the Stata output is below, and the
results are shown as Figure 1.

. * Smile plot *

. smileplot,pvalue(p) estimate(somd) ptlabel(fa) method(holland) /*
> */ scatteropts(mlabpos(12) mlabsize(small)) refopts(lpattern(shortdash)) /*
> */ xtitle("Somers’ D for trend with oily fish group") /*
> */ ytitle("Uncorrected P-value") ylabel(,nogrid) /*
> */ xsize(4) ysize(2.392) saving(ofishgp_m_1.gph,replace)

Method: holland
Uncorrected overall critical P-value: .05
Number of P-values: 40
Corrected overall critical P-value: .00183023
Number of rejected P-values: 12
(file ofishgp_m_1.gph saved)

The options pvalue, estimate and ptlabel are set to the variables p, somd and fa,
respectively. The method option is set to holland, and puncor defaults to 0.05. The
other options set are graph options. Using the Holland-Copenhaver-corrected critical
P -value of 0.00183023, we reject 12 of the 40 P -values. In Figure 1, we see the P -values
plotted against the corresponding Somers’ D estimates, and labelled with a fatty acid
label. The letter “w” in the fatty acid label represents a Greek omega (ω), so that, for
instance, “205w3” and “226w3” represent the fatty acids 20:5 (ω-3) (or eicosapentaenoic
acid) and 22:6 (ω-3) (or decosahexaenoic acid), commonly derived from fish oils, whereas
“182w6” represents 18:2 (ω-6) (or α-linoleic acid), commonly derived from vegetable
oils. Typical Somers’ D values range from −0.1 to 0.1, so there is a lot of overlap
between the distributions of RBC membrane composition in frequent fish eaters and
in infrequent fish eaters. The X-axis reference line represents the value of 0 expected
for Somers’ D under the null hypothesis of no association between fish consumption
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and RBC fatty acid level. The lower and upper Y -axis reference lines represent the
uncorrected and corrected critical P -values, respectively. The upper Y -axis reference
line (or parapet line) represents an upper bound for the set of null hypotheses that
are true. We are (conservatively) 95% confident that the set of fatty acids unassociated
with oily fish consumption is some subset, possibly empty, of the set of fatty acids below
the parapet line. Therefore, it seems that, for whatever reason, a pregnant woman’s
fish consumption level is associated with the fatty acid composition of her own RBC
membranes, especially with their content of fish-derived fatty acids. The importance of
this association is discussed in Williams et al. (2001).
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Figure 1: Smile plot of Somers’ D for oily fish group and maternal RBC fatty acids.

Figure 2 shows the smile plot for associations between maternal fish consumption
and cord blood fatty acids. This time, typical Somers’ D values range from −0.05 to
0.05, and 2 out of the 40 fatty acids show a “nominally significant” negative association
with oily fish consumption (P ≤ 0.05). However, both are below the parapet line. This
suggests that these “significant” associations could easily be the 5 percent that we would
expect to be significant at the 5 percent level by chance, assuming all null hypotheses
to be true. There is therefore little evidence that a pregnant woman’s fish consumption
predicts the fatty acid composition of her baby’s RBC membranes.

Plotting the P -values on a reverse log scale implies that the higher a data point is,
the more significant it is, and draws attention to points above the parapet line by giving
them more than their share of space. It also gives the skeptical reader an idea of what
might or might not have been achieved by publication bias, or by the notorious practice
of “salami science”, whereby scientists distribute a given quantity of results over as
many papers as possible. For instance, cynical readers might suspect that scientists
would submit the results for cord blood and maternal blood fatty acids as two separate
papers, rather than as one large paper, or even publish only the “significant” maternal
blood results and discard the “non-significant” cord blood results. These practices, if
followed, will make the corrected critical P -value less conservative. However, splitting a
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group of results into two equal subgroups will double the Bonferroni-corrected critical P -
value, whereas pooling two equal subgroups will halve the Bonferroni-corrected critical
P -value. (Other multiple test procedures which control family-wise error rate (FWER),
including the Holland-Copenhaver procedure used here, are slightly less conservative
than the Bonferroni correction, but similar scaling laws seem to apply to the individual
critical P -values ci as we halve or double the number of measured parameters.) On a
reverse log scale, this implies that splitting (or pooling) a group of results will lower (or
raise) the parapet line by approximately 0.3 log10 units, where a log10 unit is the space
between two of the Y -axis tick marks on Figures 1 and 2. Therefore, pooling the two
smile plots is only likely to lose one “significant” association (involving acid 18:3 (ω-3),
or α-linolenic acid).

On the other hand, the reverse log scale is not the only possible scale for plotting
P -values, and other scales may be better in some ways and worse in others. Possible
alternatives include power transformations and the lods transformation traditionally
used by geneticists (see Sham, 1998). Readers interested in investigating alternative
transformations may find that a useful tool is Patrick Royston’s tgraph, which plots
data using specified monotonic transformations. See the original paper by Royston
(1996) for discussion, but use the later version of the code downloadable from SSC.
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Figure 2: Smile plot of Somers’ D for oily fish group and cord RBC fatty acids.

4.2 Data mining using the by option

In practice, scientists are often called upon to measure more than 40 associations at a
time. An example from the ALSPAC cohort involved assessing 33 FFQ-based candidate
risk factors for binomial and multinomial disease outcomes, using logistic regression.
The risk factors were either continuous factors such as dietary selenium, in which case
the trend was measured by a per-doubling odds ratio, or ordinal categorical factors
such as oily fish consumption, in which case the trend was measured by a per-category
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Figure 3: 495 subset-specific unadjusted ORs for persistent wheezing.

odds ratio. The main analyses are to be published elsewhere. However, a subsidiary
analysis is presented here. The disease outcome was persistent wheezing, defined as
wheezing reported at ages 0-6 months and again at ages 30-42 months. Trends for
the 33 risk factors were measured in each of 15 subsets of children, defined by sex
(male or female), maternal atopic disease history, primiparity, maternal smoking, low
birthweight and prematurity (no or yes), and maternal overweight status (no, yes or
unknown). This implies 33 × 15 = 495 subset-specific odds ratios. These odds ratios
were calculated, stored in a data set with their confidence limits and P -values using
the parmest package, and then entered into smileplot, using the method(simes) and
by(subset) options and the default uncorrected P -value of 0.05. The resulting array of
smile plots (for unadjusted odds ratios) is presented as Figure 3, and is more informative
if it is enlarged and the data points are labelled by exposure.

The Simes procedure is a FDR-controlling procedure, and rejected 33 null hypothe-
ses of the 495. We can therefore be 95% confident that some of these 33 odds ratios are
not due to chance, or 90% confident that most of them are not due to chance. None
of the null hypotheses were rejected by the Bonferroni or Holland-Copenhaver proce-
dures. The second smile plot from the left in the top row contains subset-specific odds
ratios less than 1 for boys, and a few of these odds ratios are above the parapet line
of P = 0.003333. We therefore have reason to believe that some foods and/or nutri-
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Figure 4: 495 subset-specific adjusted ORs for persistent wheezing.

ents consumed during pregnancy by mothers are negatively associated with persistent
wheezing in their sons, even though the odds ratios are part of an enormous data min-
ing expedition. (Note that we are not claiming evidence of an “interaction”, however
defined, and definitely not claiming that the associations are restricted to subsets. We
are claiming only that some associations are present, at least in subsets.)

Unfortunately, as can be seen from the smile plots, the size of the odds ratios is
typically between 0.5 and 1.5. Such modest associations might not all be due to chance,
but they might be due to confounding. We re-calculated the 495 odds ratios, adjusting
for a list of confounders, including maternal housing tenure and maternal education
as proxies for “socio-economic status”. These adjusted odds ratios are smile-plotted
in Figure 4. The Simes parapet line is now higher at 0.000101, because the Simes
procedure is a step-up procedure. The lowest P -values are typically higher, mostly
because adjusting for confounders has widened the confidence intervals. A minority
of P -values are between the uncorrected and corrected critical P -values, but drawing
attention to these might possibly be viewed as “data dredging”, rather than data mining.
The advantage of smile plots is that these points can be seen at a glance.
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4.3 Psoriasis genetics

Genetics is a field in which multiple test procedures are increasingly required, because of
the unprecedented availability of so many genetic markers (Weller et al., 1998). Mallon
et al. (1998) carried out a small unmatched case-control study, with 14 cases and 147
controls, to measure the association, in HIV-positive patients, between psoriasis and the
Cw-0602 gene. Using polymerase chain reaction (PCR), it was possible to distinguish 22
alleles (versions) of the Cw locus (gene). The authors estimated odds ratios between each
allele and psoriasis, using Fisher’s exact tests and the corresponding so-called “exact”
confidence intervals (see [R] epitab or Mehta et al., 1985). The authors predicted, a
priori, that the Cw-0602 allele would be associated with psoriasis, whereas the other
21 alleles would not. However, it might be unreasonable to expect a skeptical public to
believe this, so a Bonferroni correction was used.

We have re-analysed the data using smileplot and multproc. The data were re-
formatted into a data set with one observation for each of the 22 alleles, and variables
label, or and p exact, containing, respectively, the allele name, the odds ratio with
psoriasis, and the Fisher exact P -value. The small number of cases implied that the log
odds ratios would be far from Normally distributed, and, indeed, some odds ratios were
zero. Although the alleles are not mutually exclusive (as each patient has one from each
parent), we would expect that, if all null hypotheses are true, then the events of Type I
error for different alleles might be negatively associated. Therefore, it makes sense to
use the Holm procedure (to control the FWER) or, possibly, the Yekutieli procedure
(to control the FDR). The program output, in part, was as follows:

. smileplot,pv(p_exact) esti(or) ptl(tlabel) me(holm) nline(1) /*
> */ refopts(lpattern(shortdash)) scatteropts(mlabsize(medium) mlabpos(12)) /*
> */ xlab(0(1)12) ytitle("Fisher’s exact P-value") ylab(,nogrid) /*
> */ xsize(4) ysize(2.392) saving(smplot1.gph,replace)

Method: holm
Uncorrected overall critical P-value: .05
Number of P-values: 22
Corrected overall critical P-value: .00238095
Number of rejected P-values: 1
(file smplot1.gph saved)

. more

. multproc,pv(p_exact) me(bonferroni)

Method: bonferroni
Uncorrected overall critical P-value: .05
Number of P-values: 22
Corrected overall critical P-value: .00227273
Number of rejected P-values: 1

The smile plot is given as Figure 5, and was made using the Holm procedure. Note
that the ptlabel option has been set to a new variable tlabel, so that only the data
points with the two lowest P -values are labelled. The nline option ensures that the
null-hypothesis line is at 1 rather than 0 (the default if xlog is not specified). After
creating the smile plot, the program called multproc, which produces similar output to
smileplot without the plot, to do a post hoc analysis using the bonferroni method.
Note that the holm parapet line is lower than the bonferroni parapet line would be,



22 Multiple test procedures and smile plots

Cw−0501

Cw−0602

.05

.00238095

1

.1

.01

.001

.0001

.00001

F
is

he
r’s

 e
xa

ct
 P

−
va

lu
e

0 1 2 3 4 5 6 7 8 9 10 11 12

Odds ratio

Figure 5: Odds ratios for association of 22 Cw alleles with psoriasis.

because the Holm procedure is a step-down procedure, and the parapet line is therefore
the lowest critical P -value ci such that Qi > ci, in this case c2. The data point with
the smallest P -value (allele Cw-0602) is clearly above the parapet. The data point with
the second-smallest P -value (allele Cw-0501) is clearly below the parapet.
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