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Abstract. A program censlope is presented for calculating confidence intervals
for generalized Theil–Sen median (and other percentile) slopes (and per–unit ra-
tios) of a variable Y with respect to a variable X. The confidence intervals are
robust to the possibility that the conditional population distributions of Y , given
different values of X, differ in ways other than location, such as having unequal
variances. The program uses the program somersd, and is part of the somersd

package. It can therefore estimate confounder–adjusted percentile slopes, limited
to comparisons within strata defined by values of confounders, or by values of a
propensity score representing multiple confounders. Iterative numerical methods
have been implemented in the Mata language, enabling efficient calculation of per-
centile slopes and their confidence limits in large samples. Example analyses are
given from the auto data and from the Avon Longitudinal Study of Pregnancy
and Childhood (ALSPAC).
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1 Introduction

The Theil–Sen median slope is a rank–based parameter, defined in terms of Kendall’s
tau, but expressed in Y –axis units per X–axis unit, and interpreted as a “typical”
difference in a Y –variable associated with a unit difference in an X–variable. It is
therefore useful to know, if we want to use rank methods to make monetary or other
practical decisions. It was introduced by Theil (1950) and developed by Sen (1968), who
derived a confidence interval formula. If the X–variable is binary, then the Theil–Sen
median slope is known as the Hodges–Lehmann median difference, and is expressed in
Y –axis units. This median difference was introduced by Hodges and Lehmann (1963)
and developed by Lehmann (1963), who derived a confidence interval formula which is a
special case of the one in Sen (1968). The median difference was popularized by Conover
(1980), Campbell and Gardner (1988) and Altman et al. (2000), and implemented in
Stata by Wang (1999) and in Patrick Royston’s SSC package cid. A good general
introduction to confidence interval formulas for median slopes and differences is given
in Sprent and Smeeton (2001).

Most existing confidence interval formulas for median slopes and differences assume
that, if β is the median slope, then the variable Y − βX is statistically independent of
X . This in turn implies that the conditional distributions of Y , given different values
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2 Confidence intervals for rank statistics

of X , differ only in location, and not in other ways such as unequal variance. These
problems are discussed in Wilcox (1998), who describes a possible solution using the
percentile bootstrap. Also, the median differences and slopes are usually defined as crude
differences and slopes, assumed to apply to the whole population, and not as adjusted
differences and slopes, assumed to apply within sub–populations with similar values of
stratification or confounding variables. These assumptions may limit the usefulness of
these confidence interval formulas.

In a more recent paper (Newson (2002)), it was argued that median differences
and slopes belong to a unified family of rank parameters, with a unified system of
confidence interval formulas. In this family of parameters, median differences and slopes
are naturally defined in terms of Somers’ D, which in turn is naturally defined in terms of
Kendall’s τa. This paper introduced the somersd package, downloadable from SSC, as a
way of calculating some of these confidence intervals. At the time, the somersd package
contained two modules, namely somersd, described in Newson (2000a), for calculating
confidence intervals for Somers’ D and Kendall’s τa, and cendif, described in Newson
(2000b), for calculating confidence intervals for Hodges–Lehmann median differences.
In 2005, Version 9 of Stata introduced the Mata programming language, which made it
possible to update the module somersd to estimate many extended versions of Somers’ D
and Kendall’s τa, and to do so with increased computational speed. This update was
reported in Newson (2006b), which contains the syntax, formulas and methods, and in
Newson (2006a), which describes the Mata algorithm used.

The current paper describes a third module censlope, which has been added to the
somersd package in a more recent update, and which estimates generalized Theil–Sen
median (and other percentile) slopes, differences and ratios. In particular, these slopes,
differences and ratios may be adjusted for confounding variables, allowing the user to
use rank methods to answer many questions which could previously only be answered
using regression methods. In Section 2, we describe the current version of the program
censlope. In Section 3, we present in detail, for reference purposes, the methods and
formulas used by censlope. In Section 4, we demonstrate a range of examples.

2 The program censlope

2.1 Syntax

censlope yvarname xvarname
[

weight
][

if exp
][

in range
][
,

centile(numlist) eform ystargenerate(newvarlist) estaddr somersd options

iteration options
]

where yvarname and xvarname are variable names, somersd options are any of the
options used by somersd, and iteration options are any of the options described in
Subsection 2.4.

fweights, iweights and pweights are allowed; see help for weight. They are inter-
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preted as for somersd.

bootstrap, by, jackknife, and statsby are allowed; see help for prefix.

2.2 Description

censlope calculates confidence intervals for generalized Theil–Sen median slopes, and
other percentile slopes, of a Y –variable specified by yvarname with respect to an X–
variable specified by xvarname. These confidence intervals are robust to the possibility
that the population distributions of the Y –variable, conditional on different values of the
X–variable, are different in ways other than location. This might happen if, for example,
the conditional distributions had different variances. For positive–valued Y –variables,
censlope can be used to calculate confidence intervals for median per–unit ratios, or
other percentile per–unit ratios, associated with a unit increment in the X–variable. if
the X–variable is binary with values 0 and 1, then the generalized Theil–Sen percentile
slopes are the generalized Hodges–Lehmann percentile differences between the group
of observations whose X–value is 1 and the group of observations whose X–value is 0.
censlope is part of the somersd package, and requires the somersd program in order
to work. It executes the somersd command

somersd xvarname yvarname [ weight ] [ if exp ] [ in range ] [ , somersd options ]

and then estimates the percentile slopes. The estimates and confidence limits for the
percentile slopes are evaluated using an iterative numerical method, which the user may
change from the default, using the iteration options.

2.3 Ordinary options

centile(numlist) specifies a list of percentile slopes to be reported, and defaults to
centile(50) (median only) if not specified. Specifying centile(25 50 75) will
produce the 25th, 50th and 75th percentile differences.

eform specifies that exponentiated percentile slopes are to be given. This option is used
if yvarname specifies the log of a positive–valued variable. In this case, confidence
intervals are calculated for percentile ratios or per–unit ratios between values of the
original positive variable, instead of for percentile differences or per–unit differences.

ystargenerate(newvarlist) specifies a list of variables to be generated, corresponding
to the percentile slopes, containing the differences Y ∗(β) = Y − βX , where β is
the percentile slope. The variable names in the newvarlist are matched to the list of
percentiles specified by the centiles() option, sorted in ascending order of percent.
If the two lists have different lengths, then censlope generates a number nmin
of new variables equal to the minimum length of the two lists, matching the first
nmin percentiles with the first nmin new variable names. Usually, there is only one
percentile slope (the median slope), and one new ystargenerate() variable, whose
median can be used as the intercept when drawing a straight line through the data
points on a scatter plot.
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estaddr specifies that the results saved in r() will also be saved in e() (see Subsec-
tion 2.5 below). This makes it easier to use censlope with parmby, in order to
create an output dataset (or resultsset) with one observation per by–group and data
on confidence intervals for Somers’ D and median slopes. parmby is part of the
package parmest, downloadable from SSC. An example of the use of the estaddr
option with parmby appears in the online help for censlope.

2.4 Iteration options

Table 1: Iteration options used by censlope.
options Description
fromabs(#) initial estimate for absolute magnitude of slopes
brackets(#) maximum number of rows for the bracket matrix
technique(algorithm spec) iterative numerical solution technique
iterate(#) perform maximum of # iterations; default is

iterate(16000)
tolerance(#) tolerance for the percentile slopes
log display an iteration log of the brackets during bracket

convergence

where algorithm spec is

algorithm
[

#
[

algorithm
[

#
] ]

. . .
]

and algorithm is { bisect | regula | ridders }

The censlope command calculates estimates and confidence limits for a median
or other percentile slope β by solving numerically a scalar equation in β, using an
iterative method. The options controlling the exact iterative method will probably
not be used very often, because censlope is intended to have sensible defaults. Non–
technical readers may therefore skip this subsection. However, users who wish to change
the default method may do so, using a set of options similar to the maximization options
used by Stata maximum–likelihood estimation commands (see [R] maximize). These
options are listed in Table 1, and are described as follows:

fromabs(#) specifies an initial estimate of the typical absolute magnitude of a percentile
slope. If fromabs() is not specified, then it defaults to the aspect ratio (ymax −
ymin)/(xmax − xmin) (where xmax and xmin are the maximum and minimum
X–values, and ymax and ymin are the maximum and minimum Y –values) if that
ratio is defined and nonzero, and to 1 otherwise. This magnitude is used in the
construction of the bracket matrix. Candidate bracket β–values will have values of
zero or of ±fromabs × 2K , where K is a nonnegative integer. The bracket matrix
is a matrix with 2 columns and 3 or more rows, each row containing a candidate
β–value in column 1 and the corresponding ζ∗–value in column 2. It is used to find
an initial pair of β–values for input into the iterative numerical solution method,
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which attempts to find a solution in β between the two initial β–values. The bracket
matrix is initialized to have β–values −fromabs, 0 and +fromabs, and ζ∗–values
corresponding to these β–values. If a target ζ–value is outside the range of the ζ∗–
values of the bracket matrix, then the bracket matrix is extended by adding new
rows before the first row by successively doubling the β–value in the first row, or
by adding new rows after the last row by successively doubling the β–value in the
last row, until there is a ζ∗–value in the second column on either size of the target
ζ–value. For an explanation of this terminology, see Section 3.

brackets(#) specifies a maximum number of rows for the bracket matrix. The mini-
mum is brackets(3). The default is brackets(1000).

technique(algorithm spec) specifies an iterative solution method for finding a solution
in β to the equation to be solved. The following algorithms are currently imple-
mented in censlope:

technique(bisect) specifies an adapted version of the bisection method for step
functions.

technique(regula) specifies an adapted version of the regula falsi (or false posi-
tion) method for step functions.

technique(ridders) specifies an adapted version of the method of Ridders (1979)
for step functions.

The default is technique(ridders 5 bisect iterate), where iterate is the value
of the iterate() option. The bisection method is guaranteed to converge in a
number of iterations similar to the binary logarithm of the tolerance() option.
The regula falsi and Ridders methods are usually faster if the ζ∗–function is very
nearly continuous, but may sometimes be slower if the ζ∗–function is a very discrete
step function. All methods are modified versions, for step functions, of the methods
of the same names described in Press et al. (1992).

You can switch between algorithms by specifying more than one in the technique()
option. By default, censlope will use an algorithm for five iterations before switch-
ing to the next algorithm. To specify a different number of iterations, include the
number after the technique in the option. For example, specifying technique(ridders
10 bisect 1000) requests that censlope perform 10 iterations using the Ridders
algorithm, perform 1000 iterations using the bisection algorithm, and then switch
back to Ridders for 10 iterations, and so on. The process continues until convergence,
or until the maximum number of iterations is reached.

iterate(#) specifies the maximum number of iterations. When the number of iter-
ations equals iterate(), the iterative solution program stops and records failure
to converge. If convergence is declared before this threshold is reached, it will stop
when convergence is declared. The default value of iterate(#) is the current value
of set maxiter, which is iterate(16000) by default.
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tolerance(#) specifies the tolerance for the percentile differences. When the relative
difference between the current β–brackets is less than or equal to tolerance(), the
tolerance() convergence criterion is satisfied. tolerance(1e-6) is the default.

log specifies that an iteration log showing the progress of the numerical solution method
is to be displayed. Note that, if an iteration log is displayed, then there will be 4
separate iteration sequences per percentile, estimating the left estimate, the right
estimate, the lower confidence limit, and the upper confidence limit, respectively.
For this reason, the default is not to produce an iteration log. However, if censlope
is expected to be slow (as in the case of very large datasets), then an iteration log
can be specified to reassure the user that progress is being made.

2.5 Saved results

censlope saves the following results in r():

Scalars
r(level) confidence level
r(fromabs) value of the fromabs() option
r(tolerance) value of the tolerance() option

Macros
r(yvar) name of the Y-variable
r(xvar) name of the X-variable
r(eform) eform if specified
r(centiles) list of percents for the percentiles
r(technique) list of techniques from the

technique() option
r(tech steps)list of step numbers for the tech-

niques

Matrices
r(cimat) confidence intervals for per-

centile differences or ratios
r(rcmat) return codes for entries of

r(cimat)
r(bracketmat)bracket matrix
r(techstepmat) column vector of step numbers

for the techniques

The matrix r(cimat) has one row per percentile, and columns containing the per-
cents, percentile estimates, lower confidence limits and upper confidence limits, labelled
Percent, Pctl Slope, Minimum and Maximum if eform is not specified, or Percent,
Pctl Ratio, Minimum and Maximum if eform is specified. The matrix r(rcmat) has the
same numbers of rows and columns as r(cimat), with the same labels, and the first
column contains the percents, but the other entries contain return codes for the esti-
mation of the corresponding entries of r(cimat). These return codes are equal to 0
if the β–value was estimated successfully, 1 if the corresponding ζ∗–value could not be
calculated, 2 if the corresponding ζ∗–value could not be bracketed, 3 if the β–brackets
failed to converge, and 4 if the β–value could not be calculated from the converged
β–brackets. The matrix r(bracketmat) is the final version of the bracket matrix de-
scribed in the help for the fromabs() and brackets() options of censlope, and has
one row per β–bracket, and two columns, labelled Beta and Zetastar, containing the
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β–brackets and the corresponding ζ∗–values. The matrix r(techstepmat) is a column
vector, with one row for each of the techniques listed in the technique() option, with
a row label equal to the name of the technique and a value equal to the number of
steps for that technique. The fromabs(), brackets(), tolerance() and technique()
options are described in Subsection 2.4 above.

censlope also saves in e() a full set of estimation results for the somersd command

somersd xvarname yvarname [ weight ] [ if exp ] [ in range ] [ , somersd options ]

as described in Subsection 2.2 above. If estaddr is specified, then this set of estimation
results is expanded by adding a set of e() results with the same names and contents
as the r() results. This allows the user to pass a censlope command to parmby,
producing an output dataset (or resultsset) with one observation per by–group and
data on confidence intervals for Somers’ D and for the median slope.

3 Methods and formulas

This section is intended mainly as a reference for the extensive family of methods and
formulas used by the censlope program. Less technically–minded readers may skip or
skim through this section and progress to the Examples.

The Theil–Sen median slope was introduced by Theil (1950) and developed further
by Sen (1968). If the X–variable is binary with values 0 and 1, then the Theil–Sen
slope is the Hodges–Lehmann median difference of Hodges and Lehmann (1963) and
Lehmann (1963). The methods used by censlope are a generalization of the methods
of Theil and Sen. They include, as a special case, the methods used by cendif (Newson
(2000b)), which calculates confidence intervals for generalized Hodges–Lehmann median
differences, and is also part of the somersd package. However, note that cendif (like
ttest) estimates the median difference between Y –values associated with the smaller
X–value and Y –values associated with the larger X–value, whereas censlope (like
regress), given a binary X–variable with values 0 and 1, estimates the median difference
between Y –values associated with the larger X–value and Y –values associated with the
smaller X–value.

Percentile slopes are defined in terms of the parameters Somers’ D (Somers (1962))
and Kendall’s τa (Kendall and Gibbons (1990)). A discussion of the connections between
these parameters appears in Newson (2002). For the purposes of censlope, we will
define Somers D and Kendall’s τa in the very general sense used in Newson (2006b).
Given two random variables U and V , we denote by τ(U, V ) the Kendall’s τa of U
and V , and denote by D(U |V ) the Somers’ D of U with respect to V . Briefly, if two
(U, V )–pairs (Ui, Vi) and (Uj, Vj) are sampled from some population of such pairs using
some sampling scheme, then τ(U, V ) is the difference between the probability that the
two (U, V )–pairs are concordant (meaning that the higher of the two U–values is paired
with the higher of the two V –values) and the probability that the two (U, V )–pairs
are discordant (meaning that the higher of the two U–values is paired with the lower
of the two V –values). We define D(U |V ) as the difference between the corresponding
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conditional probabilities, given that the two V –values are strictly ordered (meaning that
one V –value is known to be higher than the other V –value). Note that both τ(U, V )
and D(U |V ) are differences between probabilities, and therefore both may have values
ranging from -1 (for a “perfect negative association”) to +1 (for a “perfect positive
association”), but τ(U, V ) is always symmetric in U and V , whereas D(U |V ) is not.
We will use the notation θ(U, V ) to stand for the value of either τ(U, V ) or D(U |V ) in
the population, and denote the corresponding sample value as θ̂(U, V ). The somersd
package allows us to choose between Somers D and Kendall’s τa using the taua option,
and also provides other options, to specify a version of either parameter corresponding
to a specific sampling scheme.

For an outcome variable Y , a predictor variable X and a proportion q such that
0 ≤ q ≤ 1, a 100qth percentile slope of Y with respect to X is defined as a value β
satisfying

θ(Y − βX, X) = 1 − 2q (1)

If q = 0.5, then 1 − 2q = 0, and a solution in β to (1) is known as a Theil–Sen median
slope, as defined in Theil (1950) and Sen (1968). Note that there is not always a unique
solution to (1) in β. If the joint population distribution of Y and X is discrete (as
are all population distributions sampled by applied statisticians in the real world), then
θ(Y −βX, X) will be a monotonically non–increasing step function of β, and there may
be no exact solution, or an interval of exact solutions. However, the confidence intervals
derived here will contain any solution with the specified confidence level, if a solution
exists.

If θ( · , · ) stands for Somers’ D rather than Kendall’s τa, then the value of the pa-
rameter θ(Y − βX, X) depends only on the conditional distribution of pairs of bivariate
observations (X1, Y1) and (X2, Y2) satisfying X1 < X2. For such pairs of observations,
the pairwise slope (Y2 − Y1)/(X2 −X1) is always defined. If neither X nor Y is subject
to left– or right–censorship, then the equality (1) becomes

1 − 2q = D(Y − βX |X )
= Pr(Y1 − βX1 < Y2 − βX2 ) − Pr(Y1 − βX1 > Y2 − βX2 )
= Pr[ (Y2 − Y1)/(X2 − X1) > β ] − Pr[ (Y2 − Y1)/(X2 − X1) < β ]

(2)
Therefore, a 0.5th percentile (or median) slope has the expected property that a pairwise
slope is equally likely to be above or below it. If in addition the distributions of X and
Y are limited to finite sets of discrete values, then the distribution of pairwise slopes will
be bounded, and a 0th percentile slope will be any number below all possible pairwise
slopes, and a 100th percentile slope will be any number above all possible pairwise
slopes.

We aim to include a value β in a confidence interval for a 100qth percentile slope if
and only if the sample θ̂(Y −βX, X) is compatible with a population θ(Y −βX, X) equal
to 1 − 2q. The methods of Newson (2006b), used by the program somersd, typically
use a monotonically–increasing transformation ζ( · ), which may be Normalizing and/or
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variance–stabilizing when applied to θ̂(Y − βX, X). We define

ζ∗(β) = ζ[ θ̂(Y − βX, X) ] (3)

Note that ζ∗(β) is a randomly variable function of β, with a population standard error
SE[ ζ∗(β) ], estimated consistently by a corresponding sample standard error ŜE[ ζ∗(β) ],
whose formula is one of those described in Newson (2006b). We will assume that, if
θ(Y − Xβ, X) = 1 − 2q, then the pivotal quantity

[ζ∗(β) − ζ(1 − 2q) ] / SE[ ζ∗(β) ] (4)

has a standard Normal distribution. In general, the sample ζ∗(β) is a monotonically
non–increasing step function of β, bounded above by ζ(−1) and below by ζ(1), either
of which bounds may be infinite, depending on the choice of transformation ζ( · ).

Figure 1 illustrates an example of a function ζ∗(β) from the auto data. Here, the
observations are car models, the Y –variable is trunk (trunk space in cubic feet), the
X–variable is foreign (a binary variable indicating non–US origin), the transformation
is the hyperbolic arctangent or Fisher’s z (as recommended by Edwardes (1995)), and
a slope β is a difference (expressed in cubic feet) between cars made by non–US and
US companies. The function ζ∗(β) is plotted against the differences β over the range of
differences for which the absolute value of ζ∗(β) is finite. (As there are no differences
between non–US and US cars above 9 cubic feet or below -18 cubic feet, the value
of ζ∗(β) is −∞ for β > 9 and +∞ for β < −18.) This plot was made using the
program cendif, which is restricted to binary X–variables, and calculates the full set of
differences in the Y –variable between observations in the two groups. The square data
points give values of ζ∗(β) for differences β actually observed in the auto data, and
the solid line gives values of ζ∗(β) for values of β between these observed values. Note
that the sample ζ∗(β) is a monotonically non–increasing step function of β, which is
discontinuous at the observed differences and constant within the open intervals between
consecutive observed differences. This implies that a unique exact solution for (1) does
not usually exist, as there is usually either no exact solution or an interval of exact
solutions between two consecutive observed differences. In a finite sample, this will be
true for observed slopes in general, whether or not the X–variable is binary.

If we knew the value of SE[ζ̂∗(β)], then a 100(1 − α)% confidence interval for a
100qth percentile difference might be the interval of values β for which

ζ(1 − 2q) − zα SE[ζ̂∗(β)] ≤ ζ∗(β) ≤ ζ(1 − 2q) + zα SE[ζ̂∗(β)] (5)

where zα is the 100(1 − 1
2
α)th percentile of the standard Normal distribution. To

construct such a confidence interval, we proceed as follows. Given a value ζ in the range
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Figure 1: ζ∗(β) plotted against the difference β in trunk space between non–US and US
cars.

of ζ( · ), we define

BL(ζ) = sup {β : ζ∗(β) > ζ}

BR(ζ) = inf {β : ζ∗(β) < ζ}

BC(ζ) =

⎧⎪⎪⎨
⎪⎪⎩

Undefined, if BL(ζ) = −∞ and BR(ζ) = ∞,
BL(ζ), if BL(ζ) > −∞ and BR(ζ) = ∞,
BR(ζ), if BR(ζ) < +∞ and BL(ζ) = −∞,
[ BL(ζ) + BR(ζ) ] /2, otherwise.

(6)

(By convention, the supremum (or infimum) of a set unbounded to the right (or left)
are defined as +∞ (or −∞), respectively, and the supremum and infimum for an empty
set are −∞ and +∞, respectively.) Clearly, BL(ζ) ≤ BC(ζ) ≤ BR(ζ), and the values
of BL(ζ) and BR(ζ) (if finite) can be either the same observed slope, or two successive
observed slopes. The confidence interval for a 100qth percentile slope is centered on the
sample 100qth percentile slope, defined as

ξ̂q = BC [ ζ(1 − 2q) ] (7)

The lower and upper confidence limits for a qth percentile slope are, respectively,

ξ̂(min)
q = BL

{
ζ(1−2q)−zα ŜE[ζ∗(ξ̂q)]

}
, ξ̂(max)

q = BR

{
ζ(1−2q)+zα ŜE[ζ∗(ξ̂q)]

}
(8)

If tdist is specified, then censlope uses the t-distribution with ν = N − 1 degrees of
freedom if there are N unclustered observations, or with ν = Nclust−1 degrees of freedom
if there are Nclust clusters, instead of the normal distribution, and therefore tν,α replaces
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zα in (8). Note that the upper and lower confidence limits may occasionally be infinite,
in the case of extreme percentiles and/or very small sample numbers. censlope codes
these infinite limits as plus or minus the Stata creturn value c(maxdouble), which is
the system maximim double precision value (see on–line help for creturn).

Figure 1 illustrates these formulas in the case of the Y –variable trunk and the X–
variable foreign in the auto data. The median difference in trunk capacity ξ̂0.5, and
its lower and upper 95% confidence limits, are shown as reference lines on the horizontal
axis. The estimated median difference in trunk space between non–US and US cars is
-3 cubic feet, with 95% confidence limits from -5 to -1 cubic feet. The reference lines
on the vertical axis are the optimum, minimum and maximum values of ζ∗(β) required
for β to be in the confidence interval.

Note that censlope inherits all the options of somersd, so θ(X, Y − βX) in (1) can
stand for any of the generalized versions of Somers’ D and Kendall’s τa described in
Newson (2006b). We can therefore estimate generalized percentile slopes or differences,
defined in terms of generalized Somers’ D or Kendall’s τa parameters. For instance,
we can use the wstrata() option to estimate median slopes and differences restricted
to comparisons within strata defined by a confounding variable, or we might use the
option funtype(wcluster) to estimate within–cluster median differences and slopes.
In the terminology of Serfling (1980), the Theil–Sen percentile slope is an M–estimate if
funtype(wcluster) is specified, a hybrid between an M–estimate and a U–statistic if
funtype(bcluster) is specified, and a hybrid between an M–estimate and a V –statistic
if funtype(vonmises) is specified.

3.1 Numerical evaluation of BL(ζ) and BR(ζ)

We can see, by (6), (7) and (8), that the key to calculating confidence intervals for
percentile slopes is calculating BL(ζ) and BR(ζ) for a given ζ. Traditionally, this has
been done by calculating every possible pairwise slope (Yi −Yj)/(Xi −Xj) for each pair
of observations in the sample to make a dataset of all pairwise slopes, and by using
this dataset to find the median and other percentile slopes. This requires an amount
of computational time, and data storage space, proportional to N2, where N is the
number of observations. For this reason, confidence intervals for median slopes have
traditionally only been calculated for small samples, as have confidence intervals for
other rank statistics, such as Somers’ D and Kendall’s τa, which are also commonly
calculated by comparing every pair of (X, Y )–pairs. See Sprent and Smeeton (2001) for
some worked examples using traditional methods.

It is not necessary to compare each pair of (X, Y )–pairs. somersd uses the algo-
rithm of Newson (2006a), which calculates Somers’ D, Kendall’s τa and their jackknife
variances in a time asymptotically proportional to N log N , using a search tree to avoid
having to compare every pair of (X, Y )–pairs. We can therefore use somersd to calcu-
late ζ∗(β) for any β in a time proportional to N log N . censlope uses versions of some
of the iterative numerical methods of Chapter 9 of Press et al. (1992), modified for step
functions, to evaluate BL(ζ) and BR(ζ), for a given ζ. This is done by defining the



12 Confidence intervals for rank statistics

object function ω(β) = ζ∗(β)− ζ and attempting to find a solution in β to the equation

0 = ω(β) = ζ∗(β) − ζ (9)

using somersd to calculate ω(β). This requires a computational time of order NevalN log N ,
where Neval is the number of evaluations of the object function in the iteration sequence.
For very large datasets (N > 1000), this will typically take less time than a quadratic
algorithm that compares all pairs of (X, Y )–pairs. However, in small datasets, such as
the auto data, cendif typically takes much less time to calculate a Hodges–Lehmann
median difference, using its quadratic algorithm, than censlope takes using one of its
iterative algorithms to do the same. This is not surprising. The performance study of
Newson (2006a) seems to imply that, if there are less than 100 observations, then the
execution time of somersd is dominated by “constant” terms not dependent on sam-
ple size, whether somersd is using a quadratic algorithm or a search tree algorithm.
Therefore, we would expect the computational time for an iteration sequence, involving
Neval calls to somersd, to have a component proportional to Neval, which will dominate
execution time if the sample size is small and the number of iterations is large.

The algorithms used by censlope are implemented in the Mata language, and use
versions of standard bracket convergence methods for finding roots, modified for step
functions. To solve an equation of the form (9), we would normally start with two
β–values β0 and β1, whose corresponding respective ω–values ω0 and ω1 bracket zero,
meaning that ω0 ω1 < 0 (because the two ω–values have opposite signs). If ω( · ) is
continuous, then, by the intermediate–value theorem, there will be a solution to (9)
between β0 and β1, and this solution will be unique if ω( · ) is strictly monotonic. How-
ever, in this case, ω( · ) is not continuous, but a nonincreasing step function similar to
Figure 1. Therefore, instead of expecting to find a unique solution to (9), we try to find
a supremum (or infimum) of the set of β–values with positive (or negative) values of
the object function. In this case, the two ω–values are said to bracket zero if and only
if

sign(ω1) �= 0 and sign(ω1) �= sign(ω0) (10)

In other words, ω1 is a strict bracket, which must not be zero, whereas ω0 is a partial
bracket, which may either be zero or have the opposite sign to ω1. During each iteration,
we compute a new β–value βnew, between β0 and β1, with a corresponding ω–value
ωnew = ω(βnew). In the next iteration, the pair (βnew, ωnew) will replace (β1, ω1) if
sign(ωnew) = sign(ω1), and will replace (β0, ω0) otherwise. Iterations proceed until β0

and β1 have a relative difference no more than the value of the tolerance() option.
When this has happened, we can use either of the β–values to estimate BL(ζ) or BR(ζ)
(depending on whether we initialized β1 < β0 or β0 < β1).

The numerical methods specified by the technique() option differ in the method
used to calculate βnew. The technique bisect does this using the simple bisection
formula βnew = (β0 + β1)/2. The technique regula uses simple bisection if ω0 = 0, and
uses the regula falsi (or false position) method otherwise. The technique ridders uses
simple bisection if ω0 = 0, and uses the method of Ridders (1979) otherwise. The simple
bisection method is guaranteed to converge slowly, whereas the modified regula falsi and
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Ridders methods will be faster if the object function ω( · ) is nearly continuous, but may
be a lot slower if ω( · ) is very discrete. The user may specify a combination of methods,
such as starting with the regula falsi or Ridders method for earlier iterations (when the
object function is nearly continuous over a long interval), and moving to the bisection
method later (when the object function is highly discrete over a short interval).

For each percentage 100q, censlope attempts to evaluate BL[ζ(1−2q)] and BR[ζ(1−
2q)] in order to evaluate the percentile estimate ξ̂q, and then (if this evaluation is suc-
cessful) evaluates the two confidence limits. This implies 4 sequences of iterations, to
evaluate the “left estimate”, the “right estimate” and the two confidence limits, respec-
tively. Typically, using the default tolerance of 1e-6, and the “slow but sure” bisection
method, this implies 4 sets of around 20 iterations. Together with the initialization of
the brackets, this implies a large number (80–100) of calls to somersd. However, that
number is usually fewer than 100 evaluations per percentile, implying less work than
(say) bootstrapping Somers’ D, which would typically involve at least 1000 evaluations.
On the other hand, if the sample size is large, then this method would probably be
unthinkable for practical statisticians without the algorithm of Newson (2006a).

3.2 Comparisons with existing methods

Sen (1968) developed a confidence interval formula for ξ̂q in the special case where
q = 0.5, θ(Y, X) = τ(Y, X) and ζ(θ) = θ, using methods similar to the present ones. In
this special case, (1) becomes simply τ(Y − βX, X) = 0. The main difference from the
present method was in the method used for calculating the distribution of ζ∗(β). Sen
assumed that the variables X and Y − βX were not only “Kendall-uncorrelated”, but
also statistically independent. For small sample sizes (N ≤ 10), the confidence interval
was calculated using tables of the exact distribution of the sample Kendall’s τa, based
on that assumption. For larger sample sizes, the population standard error SE[ ζ∗(β) ]
was calculated from the marginal sample distribution of X , using the same assumption.
(See Kendall and Gibbons (1990) for tables of the exact distribution for small sample
sizes, and also for a demonstration that the Central Limit Theorem works very well
at sample sizes as small as 8 for the sample Kendall’s τa under the null hypothesis of
independence.) The assumption of independence between the predictor variable X and
the “residuals” Y −βX implies that the conditional population distributions of Y , given
each value of X , are different only in location, and may not differ in the conditional
variance, or indeed in any other conditional moment about the mean. The original Sen
method therefore does not use the assumption of Normality, but does use the assumption
of homoskedasticity, which typically causes more problems when it is wrong.

Lehmann (1963) derived a confidence interval for the Hodges–Lehmann median dif-
ference, which is the Theil–Sen slope for binary X–variables, based on the same as-
sumption of independence. This method was popularized by Conover (1980), Campbell
and Gardner (1988) and Altman et al. (2000), and is available in unofficial Stata, using
Duolao Wang’s npshift routine (Wang (1999)) or Patrick Royston’s cid routine, down-
loadable from SSC. The method is essentially a special case of the Sen (1968) method,
and is presumably subject to the same cautions.
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The method used by censlope and cendif, by contrast, can estimate percentile
differences other than the median difference. Even in the case of a median differ-
ence, the predictor variable X and the “residuals” Y − βX are only assumed to be
“Kendall-uncorrelated”, and not necessarily independent. The population standard er-
ror SE[ ζ∗(β) ] is estimated using the sample standard error ŜE[ ζ∗(β) ], which is calcu-
lated using an infinitesimal jackknife method described in Newson (2006b). This method
is robust to heteroskedasticity, probably at the price of being less robust to extremely
small sample sizes than the traditional methods. Therefore, the method of censlope
can be compared to the original Sen method as Huber confidence intervals can be com-
pared to maximum–likelihood or quasi–likelihood confidence intervals, and the method
of cendif can be compared to the Lehmann method as the unequal–variance t–test can
be compared to the equal–variance t–test. Lehmann’s method, like the equal-variance
t-test, assumes that you can use data from the larger of two samples to estimate the
population variability of the smaller sample. The censlope method, like the unequal–
variance t–test, assumes that you can use data from the smaller of the two samples
to estimate the population variability of the smaller sample. At present, if the tdist
option is specified for censlope or cendif, then the number of degrees of freedom is set
to one less than the sum of the two sample numbers. This is in contrast to the unequal–
variance t–test, which typically uses a more complicated formula (Satterthwaite (1946)),
which is usually less generous with degrees of freedom if the smaller sample size is very
small.

The issue of heteroskedasticity, as it affects the t–test, is discussed in Moser et al.
(1989) and in Moser and Stevens (1992), who explored the issue, using exact analytical
formulas to compare the equal–variance t–test with the Satterthwaite unequal–variance
t–test. Their conclusion (as I understand it) appears to be that we should view the
equal–variance t–test as a special method for use only when we “know” that the sub–
population variances are equal, rather than to follow the more “traditional” practice of
viewing the unequal–variance t–test as a special method for use only when we “know”
that the sub–population variances are unequal. I have carried out some unpublished
simulations, comparing cendif to the Lehmann method, and to the two t-tests. These
simulations, some of which are briefly described in Newson (2000b) and in Newson
(2002), seem to point to a similar recommendation regarding the two types of rank–
based methods for median differences. However, more work is probably required on this
issue.

An alternative method of defining heteroskedasticity–consistent confidence intervals
for the Theil–Sen median slope is the percentile bootstrap, recommended by Wilcox
(1998). Bootstrapping censlope or cendif may be an option, at least for small sam-
ples, where the computational cost of evaluating a single sample median slope or dif-
ference, using a quadratic or iterative method, is low enough to allow us to evaluate a
large number of subsample median slopes or differences. censlope adds the options of
estimating clustered and/or stratified median slopes and differences, and also the option
of non–bootstrap confidence intervals for very large samples. The infinitesimal jackknife
method, used by somersd, is usually considered to be an inferior substitute for the boot-
strap method applied to the same parameter. However, in this case, the infinitesimal
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jackknife standard error calculated by censlope is not for the median slope itself, but
for another parameter (Somers’ D or Kendall’s τa), for which the Central Limit Theo-
rem works very fast, especially under the null hypothesis (Kendall and Gibbons (1990)).
This might limit the advantage of the bootstrap over the infinitesimal jackknife. On
the other hand, a possible future compromise might be to modify censlope to allow
it to bootstrap Somers’ D or Kendall’s τa, and thereby to substitute bootstrap–based
formulas for formulas (5) and (8) when calculating confidence intervals for the percentile
slope itself. Whether we use the bootstrap or the infinitesimal jackknife, it is probably
a good idea, if the sample size is large, to calculate the Theil–Sen median slope us-
ing a non–quadratic algorithm, which does not require calculation of all the individual
pairwise slopes.

4 Examples

These examples introduce some of the capabilities of censlope. There are more ex-
amples in the online help for censlope, and in the manual censlope.pdf, which is
distributed with the somersd package as an ancillary file.

4.1 Weight per inch in the auto data

In the auto data, we can use censlope to estimate the median slope of weight (in US
pounds) with respect to length (in US inches) as follows:

. censlope weight length, tdist
Outcome variable: weight
Somers’ D with variable: length
Transformation: Untransformed
Valid observations: 74
Degrees of freedom: 73

Symmetric 95% CI

Jackknife
length Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight .8286359 .0275321 30.10 0.000 .7737644 .8835073

95% CI(s) for percentile slope(s)
Percent Pctl_Slope Minimum Maximum

50 32.745114 30.508468 35.185195

The untransformed Somers’ D of weight with respect to length is 0.83, with a confidence
interval from 0.77 to 0.88, indicating that, in the population from which these cars were
sampled, a longer car is 77% to 88% more likely to be heavier than a shorter car than
to be lighter than a shorter car. Each additional inch of length typically adds 30.51 to
35.19 pounds of weight.

If we use the z–transform for Somers’ D, then the results are as follows:

. censlope weight length, tdist transf(z)
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Outcome variable: weight
Somers’ D with variable: length
Transformation: Fisher’s z
Valid observations: 74
Degrees of freedom: 73

Symmetric 95% CI for transformed Somers’ D

Jackknife
length Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight 1.183767 .0878602 13.47 0.000 1.008662 1.358873

Asymmetric 95% CI for untransformed Somers’ D
Somers_D Minimum Maximum

weight .82863585 .76520811 .87613131

95% CI(s) for percentile slope(s)
Percent Pctl_Slope Minimum Maximum

50 32.745093 30.571414 35.121969

This time, Somers’ D is 0.77 to 0.88, implying (again) that longer cars are 77% to 88%
more likely to be heavier than shorter cars than to be lighter than shorter cars. The
typical increase in weight per additional inch of length is 30.57 to 35.12 pounds per
inch, which is very similar to the previous confidence interval.

Transformations such as Fisher’s z are more likely to be important in estimating
percentile slopes other than the median. We can ask for the 25th and 75th percentiles
as well, using the centile() option:

. censlope weight length, tdist transf(z) centile(25(25)75)
Outcome variable: weight
Somers’ D with variable: length
Transformation: Fisher’s z
Valid observations: 74
Degrees of freedom: 73

Symmetric 95% CI for transformed Somers’ D

Jackknife
length Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight 1.183767 .0878602 13.47 0.000 1.008662 1.358873

Asymmetric 95% CI for untransformed Somers’ D
Somers_D Minimum Maximum

weight .82863585 .76520811 .87613131

95% CI(s) for percentile slope(s)
Percent Pctl_Slope Minimum Maximum

25 24.102562 19.999992 27.06897
50 32.745093 30.571414 35.121969
75 41.818174 38.620683 46.200022

We see that the 25th percentile slope is 20.00 to 27.07 pounds per inch, and that the
75th percentile slope is 38.62 to 46.20 pounds per inch.

We can also produce plots of observed and fitted values, using the ystargenerate()
option of censlope. This can be done as follows:
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. censlope weight length, tdist transf(z) ystar(resid)
Outcome variable: weight
Somers’ D with variable: length
Transformation: Fisher’s z
Valid observations: 74
Degrees of freedom: 73

Symmetric 95% CI for transformed Somers’ D

Jackknife
length Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight 1.183767 .0878602 13.47 0.000 1.008662 1.358873

Asymmetric 95% CI for untransformed Somers’ D
Somers_D Minimum Maximum

weight .82863585 .76520811 .87613131

95% CI(s) for percentile slope(s)
Percent Pctl_Slope Minimum Maximum

50 32.745093 30.571414 35.121969

. egen intercept = median(resid)

. gene wthat = weight - resid + intercept

. label var wthat "Fitted weight"

. twoway scatter weight length || line wthat length, lpattern(solid)

After executing censlope, we use egen to calculate the median of the variable resid,
generated by the ystargenerate() option, which stores the “residuals” Y −βX , where
Y is weight, X is length, and β is the median slope. This median is stored in a new
variable, named intercept. Then, we generate the fitted values of weight in a new
variable wthat, calculated by subtracting Y −βX from Y to obtain βX and then adding
intercept. These fitted values are plotted as a line against length, and the observed
weight values are superimposed to create the graph of Figure 2.

4.2 Prenatal paracetamol and immunoglobulin E

The Avon Longitudimal Study of Pregnancy and Childhood (ALSPAC) is a birth cohort
study based at the University of Bristol, UK. For further information, refer to the study
website at http://www.alspac.bris.ac.uk. As part of the study, the mothers of 12127
children were asked whether they ever used paracetamol (acetaminophen) in weeks 20–
32 of pregnancy. At 7 years of age, total immunoglobulin E (IgE) was measured in
the blood of 4848 of these children. IgE is viewed as a measure of allergic tendency,
and is raised in individuals suffering from allergic diseases such as asthma. Shaheen
et al. (2005) reported that, in ALSPAC, the children of paracetamol users typically
had higher IgE levels than children of paracetamol non–users, based on estimates of
geometric mean ratios.

The distribution of total IgE, expressed in kilounits per litre (kU/l), in the 4848
children with data on IgE and on maternal paracetamol use in late pregnancy, is given
in Figure 3. Note that the distribution is non–Normal and has a long tail of extremely
high values. 2051 of these children had mothers who reported using paracetamol in late
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Figure 2: Observed and fitted car weights plotted against car length.

pregnancy, and the remaining 2797 had mothers who reported not using paracetamol.

We used censlope to compare the IgE levels in children exposed and unexposed
to maternal paracetamol use in late pregnancy, using Somers’ D and the Hodges–
Lehmann median IgE ratio. Given a randomly–sampled paracetamol–exposed child
and a randomly–sampled unexposed child, Somers’ D is the difference between the
probability that the exposed child has the higher IgE level and the probability that the
unexposed child has the higher IgE level. The Hodges–Lehmann median ratio is the
median ratio between IgE levels in two such randomly–sampled children, and is defined
as the exponential of the Hodges–Lehmann median difference between the logged IgE
values in the two groups, and estimated using the eform option of censlope. The
results were as follows:

. censlope lnigetot para32g, transf(z) eform
Outcome variable: lnigetot
Somers’ D with variable: para32g
Transformation: Fisher’s z
Valid observations: 4848

Symmetric 95% CI for transformed Somers’ D

Jackknife
para32g Coef. Std. Err. z P>|z| [95% Conf. Interval]

lnigetot .0533954 .0168421 3.17 0.002 .0203856 .0864053

Asymmetric 95% CI for untransformed Somers’ D
Somers_D Minimum Maximum

lnigetot .05334475 .02038276 .0861909

95% CI(s) for percentile ratio(s)
Percent Pctl_Ratio Minimum Maximum
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Figure 3: Distribution of blood IgE in 4848 children in ALSPAC.

50 1.172549 1.0616111 1.2944986

Here, lnigetot is the natural log of total IgE, and para32g is a binary variable, in-
dicating paracetamol exposure during weeks 20–32 of gestation. From the asymmetric
confidence interval for the untransformed Somers’ D, we see that, if we choose an ex-
posed child and an unexposed child at random, then the exposed child is 2.0% to 8.6%
more likely than the unexposed child to have the higher IgE. From the confidence in-
terval for the 50th percentile (or median) ratio, we can see that the median ratio is 1.06
to 1.29, implying that the exposed child typically has 6% to 29% more IgE than the
unexposed child.

However, these are only crude, unadjusted estimates, and the effects that they repre-
sent could be due to potential confounding variables. To produce confounder–adjusted
estimates, we used a propensity score, as defined in Rosenbaum and Rubin (1983) and
Rosenbaum (2002). We defined this score by fitting a logistic regression model, with
para32g as the outcome, to data from the 12127 children with paracetamol data. The
predictors in this model were the following confounders: gender, maternal age, prenatal
tobacco exposure, mother’s education, housing tenure, parity, maternal anxiety, ma-
ternal ethnic origin, multiple pregnancy, birth weight, gestational age at birth, head
circumference, antibiotics in pregnancy, alcohol intake in pregnancy, maternal disease
and infection history, younger siblings, presence of pets, breast feeding, day care, damp-
ness problems, passive smoking exposure after birth, obesity index at 7 years. (Not all of
these confounders could have had a causal effect on prenatal paracetamol exposure, but
they could all be indirect indicators of prenatal proneness to paracetamol exposure.)
The propensity score was defined as the predicted log odds of paracetamol exposure
from this regression model. Using the xtile command (see [D] pctile), we defined 32
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paracetamol propensity groups, with approximately equal numbers.

somersd, and therefore censlope, has a wstrata() option, allowing stratified ver-
sions of Somers’ D and median slopes, restricted to comparisons between pairs of obser-
vations in the same stratum. We measured the confounder–adjusted paracetamol effect
using censlope with the option wstrata(pg para32g), where pg para32g is a discrete
variable indicating which of the 32 paracetamol–propensity groups a child belongs to,
based on that child’s confounder values. The results were as follows:

. censlope lnigetot para32g, transf(z) eform wstrata(pg_para32g)
Outcome variable: lnigetot
Somers’ D with variable: para32g
Transformation: Fisher’s z
Within strata defined by: pg_para32g
Valid observations: 4848

Symmetric 95% CI for transformed Somers’ D

Jackknife
para32g Coef. Std. Err. z P>|z| [95% Conf. Interval]

lnigetot .0416191 .018089 2.30 0.021 .0061653 .0770729

Asymmetric 95% CI for untransformed Somers’ D
Somers_D Minimum Maximum

lnigetot .04159508 .00616518 .07692067

95% CI(s) for percentile ratio(s)
Percent Pctl_Ratio Minimum Maximum

50 1.1256541 1.0165742 1.2556066

This time, the adjusted Somers’ D is between 0.006 and 0.077, and the adjusted Hodges–
Lehmann median ratio is between 1.017 and 1.256. Therefore, if we sample a random
exposed child and a random unexposed child from the same propensity stratum, then
it is 0.6% to 7.7% more likely that the exposed child will have the higher IgE than
that the unexposed chils will have the higher IgE, and the exposed child will typically
have 1.7% to 25.6% more IgE than the unexposed child. Therefore, sampling similarly
paracetamol–prone children does not seem to alter the relative exposed–unexposed IgE
difference very much. These conclusions are (reassuringly) similar to those of Shaheen
et al. (2005).

Note that the sample size of 4848 is much larger than those of most samples conven-
tionally analysed using rank methods, and is in the range at which the computational
methods used by censlope begin to have an advantage. The unadjusted analysis pre-
sented above typically takes 2 minutes using censlope, and 4 minutes using cendif,
on my system, which is based on a 2.79Ghz Intel Pentium 4 CPU with 0.99Gb RAM
running Windows XP. As sample size increases further, so will the ratio of time and
space requirements between cendif (which uses a quadratic–time and quadratic–space
algorithm) and censlope.
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5 Summary

The censlope module is a major extension to the somersd package, enabling the es-
timation of generalized Theil–Sen percentile slopes and Hodges–Lehmann percentile
differences, corresponding to the generalized Somers’ D and Kendall’s τa parameters
introduced in Newson (2006b). All of these generalized parameters are estimated with
confidence intervals, and may be restricted to comparisons within or between clusters
and/or strata defined by a confounder, or by a propensity score summarizing multiple
confounders. The somersd package therefore allows users to do more with rank meth-
ods than they were probably accustomed to do, although we may still need regression
methods to define a propensity score.

Rank parameters of the “Somers’ D family” have the advantage of being robust to
distributional assumptions. This is mainly because Somers’ D and Kendall’s τa have
“democratic” influence functions, based on a principle of “one comparison, one vote”,
causing the Central Limit Theorem (in most cases) to work faster than it would for
comparable regression parameters. (See Hampel (1974) and Hampel et al. (1986) for
more about influence functions.) This robustness must, to an extent, be purchased
at the price of being less robust to small sample numbers. The argument of Fisher
(1935) implies that, if we know the distributional family a priori, then an estimate
for a median slope or difference based on maximum–likelihood estimators will have
a lower asymptotic variance than the corresponding Theil–Sen or Hodges–Lehmann
statistics. The contrast in power may be spectacular at tiny sample sizes, when using a
t–test may reduce the minimum detectable difference from infinity to a finite difference.
(This is why censlope and cendif can produce infinite confidence limits.) At larger
sample sizes, there is typically a more modest contrast in power, such as a 5% reduction
in the minimum detectable difference, and even this may be conditional on guessing
the distributional family right in advance. However, more work is needed (and is in
progress), in order to find out more about the tradeoffs involved.
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