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Abstract

The program powercal carries out generalized power and sample size calculations and outputs the results to
variables in a Stata data set. These variables can then be plotted and listed. This usually communicates the message
of power and sample size calculations, and the tradeoffs involved, better than a point result as provided by sampsi.

Key phrases

Power; sample size; significance level; detectable difference; standard error; influence function.

Syntax

powercal newvarname
[
if exp

][
in range

]
,

[
nunit(expression 1) power(expression 2)

alpha(expression 3) delta(expression 4) sdinf(expression 5) tdf(expression 6) noceiling float
]

Description

powercal performs generalized power calculations, storing the result in a new variable with a name specified by
newvarname. All except one of the expression options nunit(), power(), alpha(), delta() and sdinf() must be
specified. The single unspecified option in this list specifies whether the output variable is the number of sampling
units, power, alpha (significance level), delta (difference in parameter value to be detected), or the standard deviation
(SD) of the influence function. Any of these 5 quantities can be calculated from the other 4. powercal can be used
to calculate any of these quantities, assuming that we are testing a hypothesis that a parameter is zero, and that
the true value is given by delta(), and that the sample statistic is distributed around the population parameter in
such a way that the pivotal quantity

PQ = sqrt(nunits) ∗ (delta/sdinf)
has a standard Normal distribution (if tdf() is not specified) or a t-distribution with tdf() degrees of freedom (if
tdf() is specified). The formulas used by powercal define power as the probability of detecting a difference in the
right direction, using a two-tailed test.

Options

nunit(expression 1) gives an expression whose value is the number of independent sampling units. Sampling units
are defined very generally. For instance, in an experiment involving equal-sized samples of individuals from
Population A and Population B, a sampling unit might be a pair of sampled individuals, one from each
population. Similarly, in a case-control study with 4 controls per case, a sampling unit might be a case together
with 4 controls.

power(expression 2) gives an expression whose value is the power to detect a difference specified by the delta()
option (see below). The power is defined as the probability that the sample difference is in the correct direction,
and also large enough to be significant, using a 2-tailed test, at the level specified by the alpha() option (see
below).

alpha(expression 3) gives an expression whose value is the size, or significance level, of the statistical test (in units
of probability, not percentage).

delta(expression 4) gives an expression whose value is the true population difference to be detected. This difference
is assumed to be positive. Therefore, if the user wishes to detect a negative difference, then s/he should specify
an expression equal to minus that difference. The difference may be the log of a ratio parameter, such as an
odds ratio, rate ratio, risk ratio or ratio of geometric means.

sdinf(expression 5) gives an expression whose value is the standard deviation of the influence function. That is to
say, it is an expression equal to the expected standard error of the sample difference multiplied by the square
root of the number of sampling units, where sampling units are defined generally, as specified in the option
nunit(). In the simple case of a paired t-test, sdinf() is the standard deviation of the paired differences. More
generally, sdinf() can be defined by calculating a standard error for a particular number of units, from a pilot
study, from a simulation or from a formula, and multiplying this standard error by the square root of the number
of units in the pilot study, simulation or formula.

tdf(expression 6) gives an expression whose value is the degrees of freedom of the t-distribution to be assumed for
the pivotal quantity PQ specified above. The degrees of freedom expression is not necessarily integer-valued. If
tdf() is absent, then PQ is assumed to follow a standard Normal distribution.
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noceiling specifies that, if the output variable specified by newvarname is a number of units, then it will not be
rounded up to the lowest integer no less than itself (as calculated by the Stata ceil() function). This option can
be useful if the output variable is intended to specify an amount of exposure, such as a number of person-years,
and the input sdinf() expression specifies a standard deviation of the influence function per unit exposure. If
noceiling is not specified, and power(), alpha(), delta() and sdinf() are specified, then powercal rounds
up the output variable, so that it contains a whole number of units

float specifies that the output variable will have a storage type no higher than float. If float is not specified, then
powercal creates the output variable with storage type double. Whether or not float is specified, powercal
compresses the output variable as much as possible without loss of precision. (See help for compress.)

Remarks

powercal carries out sample size calculations for a more general range of possible experimental designs than
sampsi, and stores the result in a new variable, instead of reporting the result in the log. The new variable may be
input to further calculations and/or plotted and/or listed. powercal is intended as a low-level programming tool for
users intending to carry out sample size calculations for a given experimental design. It is the responsibility of the
user to ensure that the expressions are correct, and to choose a parameter scale on which the parameter is expected
to be Normally distributed (or t-distributed), with a variance that does not vary excessively with the size of the
measured difference.

Methods and Formulas

Generalized power and sample size calculation formulas are based on the Central Limit Theorem applied to
influence functions. Suppose that a sequence of (scalar or vector) random variables {Xi} is sampled independently
from a common (univariate or multivariate) population distribution, and suppose that θ(F ) is a (scalar or vector)
parameter, defined from the set of candidate (univariate or multivariate) cumulative distribution functions F that

might apply to the Xi. Denote by F̂n the sample cumulative distribution function, based on the first n of the Xi,

and define θ̂n = θ(F̂n) to be a sample estimator of θ(F0), where F0 is the true population cumulative distribution
function of the Xi. An influence function Υ(X; θ, F ) is a function, defined for each possible X-value, parameter value
and cumulative distribution function, and having the properties that

E [Υ (Xi; θ(F0), F0)] = 0 (1)

and

θ̂n = θ(F0) + n−1
n∑

i=1

Υ(Xi; θ(F0), F0) + op(n
−1/2), (2)

where E[·] denotes expectation, and op(n
−1/2) is a term having the property that op(n

−1/2)/n−1/2 converges in
probability to zero. Therefore, in words, the sample statistic is equal to the population parameter, plus the sample
mean of the population influence function, plus a third term, which is negligible if the sample size is sufficiently large.

(In the simplest case, where the Xi are scalar random variables, θ is their population mean and θ̂n is the sample
mean for the first n of the Xi, the influence function is Υ(Xi; θ, F ) = Xi − θ.)

Influence functions with properties (1) and (2) exist for a wide range of parameters, including those estimated
by maximum likelihood (whether or not the likelihood function is correctly specified). They are the reason why the
Central Limit Theorem can be generalized from sample means to more general sample statistics. More details about
the theory, and more rigorous definitions of influence functions, can be found in Hampel (1974), Hampel et al. (1986)
and Huber (1981). However, for power calculation purposes, the main consequences of properties (1) and (2) are

that, for a wide range of parameter estimates θ̂n, the quantity

Zn =
n1/2

σ

[
θ̂n − θ(F0)

]
=

[
θ̂n − θ(F0)

]
/SE(θ̂n) (3)

has an asymptotic standard Normal distribution, where

σ = E
[
Υ(Xi; θ(F0), F0)

2
]1/2

(4)

is the population standard deviation of the population influence function, and

SE(θ̂n) = σ/
√
n (5)
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is known as the asymptotic standard error. In the simplest case of estimating the population mean of scalar Xi by
the sample mean, σ is simply the population standard deviation of the Xi. However, in the more general case, if we

have a formula or estimate for SE(θ̂n) for known n, then we can multiply that formula or estimate by
√
n to derive

a formula or estimate for σ.

In practice, when calculating confidence intervals and P -values, we usually estimate σ with a consistent estimator

σ̂n, calculated from the first n of the Xi, and calculate an estimated standard error ŜE(θ̂n) = σ̂n/
√
n, and then the

quantity

Ẑn =
n1/2

σ̂n

[
θ̂n − θ(F0)

]
=

[
θ̂n − θ(F0)

]
/ŜE(θ̂n) (6)

is a consistent estimator of Zn and has an asymptotic standard Normal distribution. Sometimes, the distribution of
Ẑn for finite n can be approximated better by a t-distribution with finite degrees of freedom, which may or may not
be integer.

Most power and sample size calculations aim to calculate power and sample size to detect a non-zero value for a

population difference parameter δ, estimated by a sample difference statistic δ̂, by showing that the confidence limits
for the population δ exclude zero. (Note that a difference may be a log ratio or other difference between parameter
values transformed by a Normalizing and/or variance-stabilizing transformation.) In the following formulas, we will
assume that a significance threshold α is used to define 100(1 − α)% confidence intervals, or to reject the null
hypothesis δ = 0 with P ≤ α. If the number of sampling units is n and the standard deviation of the influence

function is σ, then the standard error of δ̂ is SE(δ̂) = σ/
√
n, and the pivotal quantity

Z = (δ̂ − δ)/SE(δ̂) = n1/2(δ̂ − δ)/σ (7)

is assumed to be distributed with a cumulative density function G(·) such that, for any z,

G(z) = Pr(Z ≤ z) = Pr(Z < z) = 1−G(−z). (8)

The first equality is a definition, the second equality specifies a continuous distribution, and the third equality
specifies that the distribution is symmetrical around zero. These conditions hold whether G(·) specifies a standard
Normal distribution or a central t-distribution. If G−1(·) is the inverse of G(·), then a 100(1−α)% confidence interval

is defined (approximately) by θ̂ ± G−1(1 − α/2) × SE(θ̂), and the null hypothesis δ = 0 is rejected in a positive
direction by a two-tailed test at P ≤ α if and only if Z ≥ G−1(1 − α/2). (We are assuming that, if the standard

error is estimated, then it is estimated well, so that the Ẑn of (6) is a good approximation to the Zn of (3).) If the
power to detect a positive difference δ is no less than a required level γ, then it follows that

γ ≤ Pr
[
δ̂/SE(δ̂) ≥ G−1(1− α/2)

]
= Pr

[
δ̂/SE(δ̂)− δ/SE(δ̂) ≥ G−1(1− α/2)− δ/SE(δ̂)

]
= 1−G

[
G−1(1− α/2) − δ/SE(δ̂)

]
= G

[
δ/SE(δ̂) − G−1(1− α/2)

]
. (9)

The first inequality is a requirement, the first equality follows trivially, the second equality follows from the fact that
G(·) specifies a continuous distribution for Z, and the third equality follows from the symmetry of that distribution
around zero. Applying G−1(·) to both sides of the inequality (9), we have

G−1(γ) ≤ δ/SE(δ̂) −G−1(1− α/2), (10)

or, equivalently,
δ
√
n

σ
≥ G−1(γ) + G−1(1− α/2). (11)

The inequality (11) expresses the power requirements elegantly and briefly, as the left hand side is increasing in
δ and n and decreasing in σ, and the right hand side is the sum of two terms, the first increasing in γ and the
second decreasing in α. We can therefore rearrange (11) to derive a minimum or maximum value for each of the
5 parameters γ, α, δ, σ and n, compatible with the power requirements (9) and with given values of the other 4
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parameters. These minima or maxima may or may not exist for γ and α in the interval (0, 1) and positive δ, σ and
n, because the inequality (11) may be satisfied nowhere or everywhere in the open interval parameter range. If we
define the quantities

R = G−1(γ) + G−1(1− α/2) and S = δ
√
n/σ − G−1(γ), (12)

then the minima and maxima are defined as follows:

γmax = G
[
δ
√
n/σ − G−1(1− α/2)

]
,

αmin = 2G(−S), if S > 0,

δmin =
σ√
n
R, if R > 0,

σmax = δ
√
n/R, if R > 0,

nmin =

⌈( σ

δ
R
)2

⌉
, if R > 0. (13)

The operator ⌈x⌉ represents the minimum integer no less than x, as calculated by the ceil() function in Stata.
This operator is not applied if the user specifies the noceiling option. The inequality (11) is not satisfied by any
α ∈ (0, 1) if S ≤ 0, and is satisfied by all positive δ, σ and n if R ≤ 0. Note that R ≤ 0 can only be true if γ ≤ 1/2,
and that S ≤ 0 can only be true if δ represents fewer standard errors than G−1(γ). In practice, we usually aim for
more than 50% power to detect an interesting positive population difference, and we usually choose a sample size
large enough to make the standard error small enough to prevent the sample difference from being negative even
when the population difference is positive enough to be interesting.

The parameter σ must usually be provided by the user. It may be estimated by multiplying a standard error
from a pilot study, a simulation or a formula by the square root of the number of units involved in calculating that
standard error. In the absence of a pilot study or a simulation, a formula is usually known only for the simplest
cases. For instance, in the case of a paired t-test, or a sign test, the standard deviation of the influence function is
simply the standard deviation of the pairwise differences, or of the signs of these differences, respectively.

However, many experimental designs involve sampling in parallel and independently from K subpopulations
of primary sampling units (PSUs), estimating a population parameter ηj for the jth subpopulation by means of a

sample estimate η̂j , and thereby estimating a contrast of interest δ =
∑K

j=1 ajηj , assumed to be zero under a null

hypothesis to be tested. (Usually, but not always, the ηj are link functions of subpopulation means in a generalized
linear model, as defined by McCullagh and Nelder, 1989. Examples include arithmetic subpopulation means, log
geometric subpopulation means, log subpopulation incidence rates, or log case and control odds of exposure in an
unmatched case-control study.) A sample for such a design may contain a number n of compound sampling units
(CSUs), where each CSU consists of mj PSUs sampled independently from each jth subpopulation. (For instance,
an unmatched case-control study may have a fixed number of controls per case, and then K = 2, a1 = 1, a2 = −1,
m1 = 1, and m2 is the number of controls per case.) Sample size calculations for such designs usually output or input

numbers of CSUs, rather than numbers of PSUs. The estimate for δ is δ̂ =
∑K

j=1 aj η̂j . The standard error of η̂j is

SE (η̂j) = σj/
√
nmj , (14)

where σj is the standard deviation of the influence function (per PSU) of ηj . If ηj is a link function in a generalized
linear model, and there is one observation per PSU, then the standard deviation of the per-PSU influence function
is equal to

σj =
dηj
dµj

√
ϕV (µj), (15)

where, in the notation of McCullagh and Nelder (1989), µj is the subpopulation mean corresponding to ηj , V (µj)

is the variance function, and ϕ is the dispersion parameter. The standard error of δ̂ is

SE
(
δ̂
)

=

√√√√ K∑
j=1

a2j [SE (η̂j)]
2
. (16)

It follows that the standard deviation of the per-CSU influence function of δ is derived from the standard errors of
the per-PSU influence functions of the ηj by the formula

σ =
√
n× SE

(
δ̂
)

=

√√√√ K∑
j=1

a2j
mj

σ2
j . (17)

Note that influence functions are “additive” because the PSUs of different subpopulations are independent.
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Example 1. Geometric mean ratios

The geometric mean (defined as the antilogarithm of the arithmetic mean logarithm) is frequently used as an
approximation to the median if a variable is positive-valued and positively skewed. Power calculations for ratios
between geometric means usually assume that the outcome variable has a lognormal distribution, so that the log
of the outcome variable has a Normal distribution. Under this assumption, the geometric mean is the median, its
log is the mean log, and the standard deviation of the logs is the other parameter of the distribution, measuring
dispersion. Alternative measures of dispersion for positive-valued variables, more familiar to non-mathematicians,
are the coefficient of variation and the qth tail ratio, defined as the ratio of the 100(1− q)th percentile to the 100qth
percentile if 0 < q < 1/2. If the lognormal assumption is true, then the standard deviation of the natural logs can
be calculated from the coefficient of variation or the qth tail ratio by the formulas

SDlog =
√

ln
(
CV2 + 1

)
= − ln(rq)/

[
2Φ−1(q)

]
, (18)

where SDlog is the standard deviation of the natural logs, CV is the coefficient of variation of the unlogged variable,
rq is the qth tail ratio of the unlogged variable, and Φ−1(·) is the inverse standard normal cumulative distribution
function. (See Aitchison and Brown, 1963, or Stanislav Kolenikov’s website at http://www.komkon.org/˜tacik/,
which contains some formulas from that source for quick reference.)

When we perform lognormal power calculations, the difference δ that we aim to detect is usually a linear contrast
between logs of geometric means. In the notation of (14), (15), (16) and (17), the ηj are logs of geometric means,
the σj are standard deviations of the logs, and we wish to know the standard deviation σ of the influence function
of the contrast δ, so that we can apply the formulas (13). In the simplest case, we may plan to measure the ratio
between geometric means in 2 treatment groups. In this case, we have K = 2, η1 and η2 are the log geometric means
in treatment groups 1 and 2 respectively, a1 = 1, a2 = −1, and the difference to detect is the log geometric mean
ratio δ = η1 − η2. The PSUs are treated units. If we decide to apply the treatments to 2 unmatched samples of
equal size, then each CSU might be a pair of PSUs, one allocated to each treatment group, and therefore we have
m1 = m2 = 1. If we assume that the two treatment groups have a common coefficient of variation (and therefore
common tail ratios), then we also have σ1 = σ2 = SDlog, where SDlog is derived from the assumed coefficient of
variation or tail ratio by (18). By (17), the standard deviation of the per-CSU influence function of δ is then given
by

σ = SDlog ×
√
2. (19)

Note that (19) is derived from a special case of (15), where the logs are distributed according to a generalized linear
model with an identity link function and a Normal variance function. In this case, ηj = µj is the arithmetic mean log

(or log geometric mean) of the jth treatment group, dηj/dµj = V (µj) = 1, and ϕ = SDlog
2 is the common variance

of the logs in both treatment groups.

The following example assumes a coefficient of variation of 0.5 within each of 2 treatment groups. This implies a
20% tail ratio of 2.2147318, meaning that, within each treatment group, the bottom of the top quintile is 2.2147318
times the top of the bottom quintile. The variable logratio is created, containing a range of log geometric mean
ratios, and the variable gmratio is created, containing the corresponding ratios themselves, which range from 1 to
2. We then use powercal to calculate, in a new variable power, the power to detect each geometric mean ratio with
P ≤ 0.01, using 50 units in each group (and therefore 50 CSUs) and carrying out a two-sample t-test on the logs.
The power is plotted against the geometric mean ratio in Figure 1, with vertical-axis reference lines for 80% and
90% power. We see that a geometric mean ratio of 1.39 can be detected with 80% power, whereas a geometric mean
ratio as high as 1.45 can be detected with 90% power.

. clear;

. scal cv=0.5;

. scal sdlog=sqrt(log(cv*cv + 1));

. scal r20=exp(-2*sdlog*invnorm(0.2));

. disp _n as text "Coefficient of variation: " as result cv
> _n as text "SD of logs: " as result sdlog
> _n as text "20% tail ratio: " as result r20;
Coefficient of variation: .5
SD of logs: .47238073
20% tail ratio: 2.2147318
. set obs 100;
obs was 0, now 100
. gene npergp=_n;
. lab var npergp "Number per group";
. powercal logratio, power(0.9) alpha(0.01) sdinf(sdlog*sqrt(2)) nunit(npergp)
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> tdf(2*(npergp-1));
Result to be calculated is delta in variable: logratio
. gene hiratio=exp(logratio);
(1 missing value generated)
. gene loratio=exp(-logratio);
(1 missing value generated)
. lab var hiratio "Detectable GM ratio >1";
. lab var loratio "Detectable GM ratio <1";
. line hiratio loratio npergp if _n>=5, xlab(0(10)100);
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Figure 1. Power to detect geometric mean ratios

Alternatively, we might wish to calculate the detectable geometric mean ratios closest to unity as a function
of sample number. The following example does this by creating a variable npergp, containing possible numbers per
group from 1 to 100, and then using powercal to calculate the detectable positive log geometric mean ratio as a
function of npergp, assuming that we require 90% power to detect a difference with P ≤ 0.01 by t-testing the logs,
and that the coefficient of variation within each treatment group is 0.5 as before. We then calculate the detectable
geometric mean ratios greater than 1 and less than 1 as hiratio and loratio, respectively, and plot these against
the number per treatment group, with a vertical-axis reference line indicating a ratio of 1. This plot is Figure 2.
Note that we have suppressed the spectacular ratios detectable with 4 or fewer subjects per group. A plot such as
Figure 2 has the advantage that it communicates to colleagues the inverse square law, whereby, to halve the detectable
difference, you must approximately quadruple (not double) the number of subjects. Non-statisticians frequently do
not appreciate this law, although they usually are vaguely aware that larger sample sizes increase power.

. clear;

. scal cv=0.5;

. scal sdlog=sqrt(log(cv*cv + 1));

. scal r20=exp(-2*sdlog*invnorm(0.2));

. disp _n as text "Coefficient of variation: " as result cv
> _n as text "SD of logs: " as result sdlog
> _n as text "20% tail ratio: " as result r20;
Coefficient of variation: .5
SD of logs: .47238073
20% tail ratio: 2.2147318
. set obs 100;
obs was 0, now 100
. gene npergp=_n;
. lab var npergp "Number per group";
. powercal logratio, power(0.9) alpha(0.01) sdinf(sdlog*sqrt(2)) nunit(npergp)
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> tdf(2*(npergp-1));
Result to be calculated is delta in variable: logratio
. gene hiratio=exp(logratio);
(1 missing value generated)
. gene loratio=exp(-logratio);
(1 missing value generated)
. lab var hiratio "Detectable GM ratio >1";
. lab var loratio "Detectable GM ratio <1";
. line hiratio loratio npergp if _n>=5, xlab(0(10)100);
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Figure 2. Detectable geometric mean ratios as a function of number per treatment group

Example 2. Odds ratios from case-control studies

Case-control studies are commonly recommended as the design of choice in genomic epidemiology for measuring
an association between a gene and a disease (see Clayton and McKeigue, 2001). If we are designing an unmatched
case-control study, then we typically plan to sample a given number of subjects with each possible disease status (eg
“with the disease” and “without the disease”), and then measure, in each subject, the exposure, which might be the
presence of a gene in a patient. The difference δ that we wish to detect is the log ratio of the odds of the exposure
between cases and controls, or possibly some other linear contrast of the log odds of exposure for different disease
status values, if there are more than 2 possible disease status values. If there are K possible values of disease status,
and Ej is the prevalence of exposure in subjects with the jth disease status, then the odds of exposure in the jth
disease category is defined as Ej/(1−Ej), and its logarithm is typically used as a normalizing and variance-stabilizing
transformation.

In the generalized linear model notation of (14), (15), (16) and (17), the PSUs are subjects (cases or controls),
the subpopulations correspond to the possible disease status values, and the “outcome” variable is a binary exposure
variable, whose distribution in each subpopulation is governed by a generalized linear model with a logit link function
and a Bernoulli variance function. The mean “outcome” in the jth subpopulation is therefore µj = Ej , the parameter
estimated for the jth subpopulation is ηj = ln [µj/(1− µj)], its derivative is dηj/dµj = 1/µj+1/(1−µj), the variance
function is V (µj) = µj(1−µj), and the dispersion parameter is ϕ = 1. It follows from (15) that the standard deviation
of the per-PSU influence function of the log odds ηj is

σj =
√
1/Ej + 1/(1− Ej). (20)

A CSU in this case is composed of mj subjects sampled independently from the subpopulation with each jth disease
status. This is because, although the case-control study is unmatched, we may plan to sample subjects of different
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disease status according to a particular ratio, such as two controls per case. The standard deviation of the per-CSU
influence function is then given by the formula (17). Note that, in the sample size calculations, the generalized linear
model is defined with the disease status as the “predictor” and the exposure status as the “outcome”. This is in
contrast to the statistical analysis, where the disease status is usually the “outcome” and the exposure status is
usually the “predictor”.

In the simplest case, there are K = 2 possible values for disease status, namely “diseased” and “undiseased”,
and a CSU is a single case together with m2 unmatched controls, so that m1 = 1. We are interested in measuring
a log odds ratio δ = η1 − η2, so, in the notation of (17), we have a1 = 1 and a2 = −1. In this case, the standard
deviation of the per-CSU influence function is given, according to (17), by

σ =

√
1

E1
+

1

1− E1
+

1

m2

[
1

E2
+

1

1− E2

]
. (21)

When designing a case-control study, we typically have a good prior estimate of the control exposure prevalence E2,
because the control exposure prevalence is intended to be an estimate for the total population exposure prevalence.
Therefore, if we hypothesize a particular value for the odds ratio, we can multiply this odds ratio by the “known”
control odds of exposure to arrive at the corresponding hypothesized case odds of exposure by the formula

E1/(1− E1) = OR× E2/(1− E2), (22)

and then calculate the case exposure prevalence E1 from the case exposure odds E1/(1−E1). Given an estimate for
the control exposure E2, the standard deviation of the per-case influence function of the odds ratio, given by (21),
is dependent on the odds ratio itself, and therefore should not be entered into the formulas (13) independently of
the odds ratio itself. This is in contrast to the case with lognormal geometric mean ratios.

The following example assumes that we are planning a case-control study to measure the association of a rare
disease with a binary exposure, whose control prevalence is expected to be 0.25, or 25%. We decide to recruit m2 = 2
unmatched controls per case. We create a data set with 1 observation for each of a range of odds ratios from 1.25 to
5, which will correspond to relative risks of the same size, if the rare disease assumption is true. The log odds ratios
are stored in the variable logor, the odds ratios are stored in or, the case exposure odds are stored in caseodds,
the case exposure prevalences are stored in caseprev, and the control exposure prevalence and odds are stored
in scalars. We use the formulas (20) and (21) to calculate the standard deviation of the influence function of the
log odds ratio in sdinflor. We then use powercal to calculate the minimum number of cases to detect each odds
ratio at significance level P ≤ 0.01 with 90% power, and plot the odds ratio against that minimum number of
cases, suppressing odds ratios requiring over 2000 cases to be detectable. The resulting graph is Figure 3. Note that
uninteresting low unadjusted odds ratios are very expensive to detect, as well as being more credibly attributed to
confounding than spectacular high odds ratios.

. clear;

. scal conprev=0.25;

. scal conodds=conprev/(1-conprev);

. disp _n as text "Expected control prevalence: " as result conprev
> _n as text "Expected control odds: " as result conodds;
Expected control prevalence: .25
Expected control odds: .33333333
. set obs 101;
obs was 0, now 101
. gene logor=log(1.25)+(log(5)-log(1.25))*(_n-1)/(_N-1);
. gene or=exp(logor);
. gene caseodds=conodds*or;
. gene caseprev=caseodds/(1+caseodds);
. gene sdinflor=sqrt(
> 1/caseprev + 1/(1-caseprev) + (1/2)*( 1/conprev + 1/(1-conprev) )
> );
. lab var logor "Log odds ratio";
. lab var or "Odds ratio";
. lab var caseodds "Case exposure odds";
. lab var caseprev "Case exposure prevalence";
. lab var sdinflor "SD of influence for log OR";
. desc;
Contains data
obs: 101
vars: 5
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size: 2,020
-------------------------------------------------------------------------------

storage display value
variable name type format label variable label
-------------------------------------------------------------------------------
logor float %9.0g Log odds ratio
or float %9.0g Odds ratio
caseodds float %9.0g Case exposure odds
caseprev float %9.0g Case exposure prevalence
sdinflor float %9.0g SD of influence for log OR
-------------------------------------------------------------------------------
Sorted by:

Note: dataset has changed since last saved
. * Detectable OR by number of cases *;
. powercal ncases, power(0.9) alpha(0.01) delta(logor) sdinf(sdinflor);
Result to be calculated is nunit in variable: ncases
. line or ncases if ncases<=2000, yscale(log);
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Figure 3. Detectable odds ratios as a function of number of cases

Using the same data set, we can also calculate, for each odds ratio, the significance level attainable with 90%
power, using 100 cases and their 200 controls. This is done as in the example below, creating Figure 4. Note that the
significance level is plotted on a reverse log scale, so that, the higher a point on the curve is, the more convincing is the
significance level that we can expect. Odds ratios between 2 and 3 are likely to be “significant” at the conventional
5% and 1% levels. However, higher odds ratios are more likely to attain significance levels that might convince the
skeptics, in view of the problems of multiple comparisons and publication bias. (See Colhoun et al., 2003, for a
discussion of these problems in genomic epidemiology.)

. * Significance level by odds ratio *;

. powercal alphamin, power(0.9) delta(logor) sdinf(sdinflor) nunit(100);
Result to be calculated is alpha in variable: alphamin
. line alphamin or,
> yscale(log reverse) ylab(1 0.05 1e-1 1e-2 1e-3 1e-4 1e-5 1e-6 1e-7)
> xscale(log) xlab(1 1.25 1.5 2(1)5);
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Figure 4. Significance level for 90% power with 100 cases as a function of odds ratio

Acknowledgements

I would like to thank Stanislav Kolenikov of the New Economic School, Moscow, Russian Federation, for posting
some very useful formulas about the lognormal distribution on his website at http://www.komkon.org/˜tacik/.

References

Aitchison J. and J. A. C. Brown. 1963. The Lognormal Distribution. Cambridge, UK: Cambridge University Press.

Clayton D. and P. M. McKeigue. 2001. Epidemiological methods for studying genes and environmental factors in complex diseases. Lancet

358: 1356-1360.

Colhoun, H. M. P. M. McKeigue and G. Davey Smith. 2003. Problems of reporting genetic associations with complex outcomes. Lancet 361:

865-872.

Hampel F. R. 1974. The influence curve and its role in robust estimation. Journal of the American Statistical Association 69: 383-393.

Hampel F. R., E. M. Ronchetti, P. J. Rousseeuw and W. A. Stahel. 1986. Robust statistics. The approach based on influence functions.

New York: Wiley.

Huber P. J. 1981. Robust statistics. New York: Wiley.

McCullagh P. and J. A. Nelder. 1989. Generalized Linear Models. 2nd ed. London: Chapman & Hall.


