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Syntax

rglm
[
varlist

][
weight

][
if exp

][
in range

][
, cluster(varname) mspec tdist minus(#) glm-options

]

where glm-options are any of the options available for glm; see [R] glm.

fweights, iweights and aweights are allowed; see [U] weight.

Description

rglm fits generalized linear models and calculates a Huber (sandwich) estimate of the variance-covariance matrix
of estimates. It can be used alone or called without arguments after a previous call to glm. As with other “robust”
commands, the units may be considered to fall into clusters.

Options

cluster(varname) specifies the variable which defines sampling clusters.

mspec specifies that full Huber variances be used. These are robust to mis-specification of conditional means. If mspec
is absent, semi-Huber variances are calculated, robust to variance mis-specification caused by overdispersion,
underdispersion, heteroscedasticity and clustering, but assuming that conditional means are specified correctly
by the model. (Except in the case of canonical link functions, where the semi-Huber variance is the full Huber
variance. See Section 2.5 of McCullagh and Nelder (1989).)

tdist specifies that P -values and confidence intervals are to be calculated assuming estimates to have a t-distribution
with M − p degrees of freedom, where p is the number of model parameters, and M is the number of clusters if
cluster is specified, or the number of observations (or sum of frequency weights) if cluster is not specified.

minus(# ) specifies the minus parameter to pass to robust, to apply a finite-sample adjustment to the Huber
covariance matrix. If absent (or negative), it is reset to p (the number of model parameters).

If a varlist is supplied, then all glm options are allowed. If not, then the only glm options allowed are level and
eform, and cluster, mspec, tdist and minus are ignored.

Methods and Formulas

In a generalized linear model (GLM), we attempt to predict a n× 1 outcome variate Y using a n× p matrix X
of predictor variates, where n is the number of observations and p is the number of parameters. These parameters
form a p×1 vector β. The n×1 vector η = Xβ, known as the linear predictor, is used to predict Y , which is assumed
in the model to have a conditional expectation equal to the n× 1 vector µ. The vectors η and µ are assumed in the
model to have a relation of the form ηi = g(µi), where g(·) is a monotonically increasing function, referred to as
the link function. The conditional variance of yi, given X, is assumed in the model to be proportional to a variance
function V (µi). The choice of link function g(·) and variance function V (·) distinguishes one GLM from another.
We will assume frequency weights (fweights) fi and non-frequency weights (iweights) wi, both defaulting to ones
if not specified. (In fact, only one kind of weight may be specified, but that is a very minor defect of Stata, not a
mathematical requirement.)

The fitting of a GLM involves finding values of β which give a zero value simultaneously for the p sums of scores∑n
i=1 fiψij , for j from 1 to p. The n × p matrix Ψ is defined such that ψij = wixijSi, where the Si are in turn

defined by

Si = S(yi, ηi) =
dµi

dηi
[V (µi)]

−1 (µi − yi). (1)

In the model, Si is interpreted as the derivative, with respect to ηi, of the i’th squared deviance residual, which is
proportional to the conditional log likelihood of yi given the row matrix Xi. ψij is the corresponding derivative with
respect to βj . (See [R] glm or McCullagh and Nelder, 1989.)

The derivative of the j’th sum of scores with respect to the k’th parameter βk is equal to
∑n

i=1 fiwixijxikHi,
where Hi is the i’th Hessian function

Hi =
dSi

dηi
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= [V (µi)]
−1

(
dµi

dηi

)2

+ (µi − yi)
d

dηi

{
[V (µi)]

−1 dµi

dηi

}

= [V (µi)]
−1

(
dµi

dηi

)2

+ [V (µi)]
−1 d2µi

dη2
i

(µi − yi)− [V (µi)]
−2 dV (µi)

dµi

(
dµi

dηi

)2

(µi − yi)

= [V (µi)]
−1

[(
dµi

dηi

)2

+
d2µi

dη2
i

(µi − yi)− dV (µi)
dµi

dµi

dηi
Si

]
. (2)

To estimate the dispersion matrix of the parameters βj , we proceed as follows, using the principles of Huber
(1967). Define the p×p matrix D =

∑n
i=1 fiwiHiX

T
i Xi. The variance expression depends on whether or not clusters

are specified. If there are no clusters, then the estimated dispersion matrix is
∑n

i=1 fi∑n
i=1 fi − kminus

(
ΨD−1

)T
F

(
ΨD−1

)
, (3)

where kminus is the value given by the minus option, and F is the n × n diagonal matrix of the frequency weights
fi. If there are clusters, we denote by M the number of these clusters and define Ψ∗ as the M × p matrix with one
row per cluster, equal to the sum of the rows of Ψ corresponding to observations in that cluster, and estimate the
dispersion matrix as

n

n− kminus

(
Ψ∗D−1

)T (
Ψ∗D−1

)
. (4)

(It does not make sense to have both clusters and fweights, because fi > 1 implies that the i’th observation
represents multiple clusters.)

To calculate the Hessian in the general case by (2), we must know the variance function with its first derivative,
and the inverse link fuction with its first two derivatives. The available variance functions have names corresponding
to distributional families, whose variances are proportional to the respective functions, and their formulae and
derivatives are as follows:

Family name V (µ) dV (µ)/dµ

Gaussian (normal) 1 0
Gamma µ2 2µ
Inverse Gaussian µ3 3µ2

Bernoulli µ(1− µ) 1− 2µ
Poisson µ 1
Negative Binomial µ + kµ2 1 + 2kµ
(shape parameter= k)

The case of fitting a binomial model with totals mi to the yi is handled by rglm as equivalent to fitting a
Bernoulli model to the proportions yi/mi and multiplying the iweights by the mi. (That is to say, we substitute
yi/mi for yi, and wimi for wi, in the formulae above.) In the case of the negative binomial distribution, the shape
parameter k is defined according to the conventions of the Stata manuals and the innards of glm.ado, in which k is
the reciprocal of the parameter of the same name defined in McCullagh and Nelder, 1989. I do not know how this
confusing state of affairs came about.

The available forms for a link function η = g(µ) also have names. The following table gives their formulae
and inverses, with their first and second derivatives. The derivatives are expressed in a computationally convenient
form. In the case of the probit link, Φ(·) is the standard Gaussian cumulative distribution function, and φ(·) is its
derivative, the standard Gaussian probability density function.

Link function g(µ) g−1(η) dµ/dη d2µ/dη2

Identity µ η 1 0
Log ln µ eη µ µ
Logit ln[µ/(1− µ)] eη/(1 + eη) µ(1− µ) µ(1− µ)(1− 2µ)
Probit Φ−1(µ) Φ(η) φ(η) −ηφ(η)
Complementary log-log log[− log(1− µ)] 1− e−eη

(µ− 1) log(1− µ) [1 + log(1− µ)]dµ/dη
Odds power q [µ/(1− µ)]q η1/q/(1 + η1/q) 1/qµ1−q(1− µ)1+q µ−q(1− µ)q(1− 2µ− q)dµ/dη
Power q µq η1/q q−1µ1−q (1− q)q−1µ−qdµ/dη
Negative binomial ln[kµ/(kµ + 1)] k−1eη/(1− eη) µ + kµ2 (1 + 2kµ)dµ/dη
(shape parameter= k)
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The negative binomial link function defined here is the correct version, consistent with the notation of the Stata
manuals and with glm.ado. (The definition in [R] glm is a misprint.)

The calculation of the Hessian is greatly simplified if we can ignore the second term of the second line of (2),
in which case we have

Hi = [V (µi)]
−1

(
dµi

dηi

)2

, (5)

and we need only know the variance function and the first derivative of the inverse link. This equality holds, in the
expectation, if the model is indeed a correct specification of the conditional mean of Y given X, so that E(µi−yi) = 0
for each individual i. It also holds if the link function is the canonical link for the variance function. In this case, the
variance function is proportional to the first derivative of the inverse link, and their ratio is a constant function of η,
so the second term of the second line in (2) is zero. (See Section 2.5 of McCullagh and Nelder, 1989.) The variances
calculated using the formula (5) are known as semi-Huber variances, whereas the variances calculated using formula
(2) are known as full Huber variances. The semi-Huber variances (given by default) are robust to heteroscedasticity,
overdispersion, underdispersion and clustering. The full Huber variances (obtained by the mspec option) are robust
to all of these, and also to mis-specification of the conditional expectation. So, for instance, if we are fitting the
parameters of a straight line, using a link function non-canonical for the chosen variance function, and the true
relationship is slightly curved, then the parameters are estimates of the straight line giving the best fit to that curve,
and the full Huber variances are consistent estimators of the true variance, in the population from which the rows
of X and Y are jointly sampled. (I have not had time to do much research on how important the difference between
semi-Huber and full Huber variances is in practice.)

Example 1

I often use rglm for carrying out unequal-variance t-tests on logs, using the eform option to get confidence
intervals (CIs) for the two group geometric means and their ratio. For instance, in the case of the auto data, we
might decide (after looking at stem-and-leaf plots) that mpg (miles per gallon) was distributed lognormally rather
than normally. The calculation of the geometric means and their ratio is carried out by Stata as follows:

. * Geometric averages and their ratio *;

. gene logmpg=log(mpg);

. gene byte us=!foreign;

. * Stem and leaf plots *;

. stem mpg;
Stem-and-leaf plot for mpg (Mileage (mpg))

1t | 22
1f | 44444455
1s | 66667777
1. | 88888888899999999
2* | 00011111
2t | 22222333
2f | 444455555
2s | 666
2. | 8889
3* | 001
3t |
3f | 455
3s |
3. |
4* | 1

. stem logmpg;
Stem-and-leaf plot for logmpg
logmpg rounded to nearest multiple of .01
plot in units of .01

24* | 88
25* |
26* | 444444
27* | 117777
28* | 3333999999999
29* | 44444444
30* | 0004444499999
31* | 4448888
32* | 22222666
33* | 3337
34* | 003
35* | 366
36* |
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37* | 1
. * Geometric averages *;
. rglm logmpg foreign us,tdist eform noconst;
GLM with semi-Huber standard errors
Gaussian (normal) distribution, identity link
Number of observations: 74
------------------------------------------------------------------------------

| Semi-Huber
logmpg | e^coef Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------
foreign | 23.96499 1.333711 57.079 0.000 21.44846 26.77678

us | 19.30189 .6250385 91.414 0.000 18.09527 20.58898
------------------------------------------------------------------------------
. * Ratio between geometric averages *;
. rglm logmpg foreign,tdist eform;
GLM with semi-Huber standard errors
Gaussian (normal) distribution, identity link
Number of observations: 74
------------------------------------------------------------------------------

| Semi-Huber
logmpg | e^coef Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------
foreign | 1.241587 .0799433 3.361 0.001 1.092027 1.411631

------------------------------------------------------------------------------

We find that foreign cars travelled at a geometric average of 23.96 mpg, whereas US cars travelled at a geometric
average of 19.30 mpg. The foreign/US ratio was 1.24 (95% CI, 1.09 to 1.41), so foreign cars, on average, were 9% to
41% more efficient than US cars.

Example 2

We might also do a probit analysis to find a way of guessing whether a car is foreign, based on knowledge of
its fuel efficiency and weight. The probit link is non-canonical for the Bernoulli variance function, so the full Huber
variance will in general be different from the semi-Huber variance. Here, the analysis is carried out in three ways:
using glm, using rglm with semi-Huber variances, and using rglm with full Huber variances. The results are as
follows:

. * Non-robust using glm *;

. glm foreign mpg weight,family(bernoulli) link(probit);
Iteration 1 : deviance = 58.5137
Iteration 2 : deviance = 54.3546
Iteration 3 : deviance = 53.7194
Iteration 4 : deviance = 53.6887
Iteration 5 : deviance = 53.6884
Iteration 6 : deviance = 53.6884
Iteration 7 : deviance = 53.6884
Residual df = 71 No. of obs = 74
Pearson X2 = 51.28325 Deviance = 53.68838
Dispersion = .7222992 Dispersion = .7561743
Bernoulli distribution, probit link
------------------------------------------------------------------------------
foreign | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------
mpg | -.1039505 .054209 -1.918 0.055 -.2101981 .0022972

weight | -.0023355 .000557 -4.193 0.000 -.0034273 -.0012438
_cons | 8.275465 2.578791 3.209 0.001 3.221128 13.3298

------------------------------------------------------------------------------
. * Robust using rglm *;
. rglm foreign mpg weight,family(bernoulli) link(probit);
GLM with semi-Huber standard errors
Bernoulli distribution, probit link
Number of observations: 74
------------------------------------------------------------------------------

| Semi-Huber
foreign | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------
mpg | -.1039505 .0690653 -1.505 0.132 -.239316 .031415

weight | -.0023355 .000497 -4.699 0.000 -.0033097 -.0013614
_cons | 8.275465 2.751861 3.007 0.003 2.881916 13.66901

------------------------------------------------------------------------------
. * Robust using rglm with mis-specification correction *;
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. rglm foreign mpg weight,family(bernoulli) link(probit) mspec;
GLM with full Huber standard errors
Bernoulli distribution, probit link
Number of observations: 74
------------------------------------------------------------------------------

| Huber
foreign | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------
mpg | -.1039505 .060185 -1.727 0.084 -.2219109 .01401

weight | -.0023355 .0005003 -4.669 0.000 -.003316 -.0013551
_cons | 8.275465 2.574692 3.214 0.001 3.229161 13.32177

------------------------------------------------------------------------------

Note that the parameter estimates are the same with all three methods, but the confidence limits are slightly
different. All three methods find that the data are (just) compatible with the hypothesis that the coefficient of mpg is
zero. (That is to say, the hypothesis that, once you know the weight of a car, you can hazard a guess as to whether
or not it is American, and be as likely to be right as you would have been if you also knew its fuel efficiency.)

Example 3

This example is based on the housing data. Here, the data points are states of the USA, and we want to predict
median rent from pcturban (percent urban) and hsngval (median housing value). This example compares the output
from rglm, tdist with those from regress and regress, robust. Note that the two robust methods produce the
same result (as they should), but the non-robust method gives the same estimates and very different CIs.

. * Regression analysis *;

. * Non-robust *;

. regr rent hsngval pcturban;
Source | SS df MS Number of obs = 50

---------+------------------------------ F( 2, 47) = 47.54
Model | 40983.5269 2 20491.7635 Prob > F = 0.0000

Residual | 20259.5931 47 431.055172 R-squared = 0.6692
---------+------------------------------ Adj R-squared = 0.6551

Total | 61243.12 49 1249.85959 Root MSE = 20.762
------------------------------------------------------------------------------

rent | Coef. Std. Err. t P>|t| [95% Conf. Interval]
---------+--------------------------------------------------------------------
hsngval | .0015205 .0002276 6.681 0.000 .0010627 .0019784

pcturban | .5248216 .2490782 2.107 0.040 .0237408 1.025902
_cons | 125.9033 14.18537 8.876 0.000 97.36603 154.4406

------------------------------------------------------------------------------
. * Robust using regress *;
. regr rent hsngval pcturban,robust;
Regression with robust standard errors Number of obs = 50

F( 2, 47) = 34.47
Prob > F = 0.0000
R-squared = 0.6692
Root MSE = 20.762

------------------------------------------------------------------------------
| Robust

rent | Coef. Std. Err. t P>|t| [95% Conf. Interval]
---------+--------------------------------------------------------------------
hsngval | .0015205 .0004654 3.267 0.002 .0005842 .0024568

pcturban | .5248216 .309813 1.694 0.097 -.0984417 1.148085
_cons | 125.9033 12.60741 9.986 0.000 100.5405 151.2662

------------------------------------------------------------------------------
. * Robust using rglm *;
. rglm rent hsngval pcturban,tdist mspec;
GLM with full Huber standard errors
Gaussian (normal) distribution, identity link
Number of observations: 50
------------------------------------------------------------------------------

| Huber
rent | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------
hsngval | .0015205 .0004654 3.267 0.002 .0005842 .0024568

pcturban | .5248216 .309813 1.694 0.097 -.0984417 1.148085
_cons | 125.9033 12.60741 9.986 0.000 100.5405 151.2662

------------------------------------------------------------------------------
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Validation

A program as comprehensive as rglm requires more validation than three examples. Accordingly, an intensive
validation was carried out, using the auto data. rglm was tested using all six available variance functions, with one
y-variate for each (rep78 for the three discrete families, mpg for the three continuous families). Each family was
tested with one canonical and one non-canonical link, except the binomial family, which was tested with its canonical
logit link and all the non-canonical links for which the Binomial family is obligatory. (So every family and link was
tested, and every family was tested with a canonical and a non-canonical link.) For each combination of family and
link, three models were fitted. These had parameters as follows:

Model 1. One parameter, corresponding to the grand mean.

Model 2. Two groups (US and foreign cars), with parameters corresponding to two group means.

Model 3. Two parameters (an intercept and the slope of a quantitative covariate).

The quantitative covariate in Model 3 was always gratio for identity links and weight for non-identity links.
(This was done because, when mpg and rep78 were plotted against weight and gratio, the relationships involving
gratio looked more linear.) The models fitted for each distributional family are summarized below.

Family Y-variate Canonical link Covariate for Non-canonical link(s) Covariate for
canonical link non-canonical link(s)

gaussian mpg identity gratio log weight
gamma mpg power -1 weight identity gratio
igaussian mpg power -2 weight identity gratio
binomial 6 rep78 logit weight probit,cloglog,opower 2 weight
poisson rep78 log weight identity gratio
nbinomial rep78 nbinomial weight identity gratio

For each of the 42 models fitted, the dispersion was estimated in five different ways. These were the orthodox
(Nelder) method given as default by glm, semi-Huber and full Huber variances without clustering, and semi-Huber
and full Huber variances with clustering by manuf. Each parameter of each model therefore had five alternative
standard errors (SEs).

In theory, some of these distinct SEs were expected to be equal. In the case of Model 1, there was no possibility
for heteroskedasticity, overdispersion, underdispersion or mis-specification (as there is a single constant X-variate
of ones), so all three unclustered SEs were expected to be equal, and both the clustered SEs were expected to be
equal. In Model 2, there was a possibility of heteroskedasticity (because of unequal group variances), and sometimes
overdispersion and underdispersion, but no possibility of mis-specification (because the predicted value of each
individual is its group mean). The semi-Huber SE was therefore expected to be equal to the corresponding full
Huber SE in each clustering class, although the orthodox, unclustered Huber and clustered Huber SEs were expected
to be different. In Model 3, there was a possibility of heteroskedasticity, overdispersion, underdispersion and mis-
specification, so all five SEs were expected to be different. Therefore, if rglm is working correctly, then we expect
the SEs of Model 1 parameters to fall into two pre-defined equivalence groups (clustered and unclustered), the SEs
of Model 2 parameters to fall into three pre-defined equivalence groups (orthodox, clustered Huber and unclustered
Huber), and the SEs of Model 3 parameters to fall into five pre-defined equivalence groups of one each. SEs in the
same equivalence group should be equal (or different only to the extent compatible with floating point calculation
error), whereas SEs for the same model in different equivalence groups should be different.

As it happened, no two SEs in the same equivalence class were different by a ratio of more than 1.0001 (that is
to say, the largest SE in an equivalence class was never more than 0.01% greater than the smallest SE in the same
equivalence class). There was a lot more variation between equivalence classes for the same parameter of the same
model. No two SEs in different equivalence classes for the same parameter of the same model differed by a ratio
of less than 1.0020. That is to say, for any two SEs in different equivalence classes for the same parameter of the
same model, the larger was always greater than the smaller by more than 0.2%, and usually the variation was much
greater.

Figure 1 shows standard errors plotted on a binary log scale for all parameters of all models fitted. In the
left-hand plot, the data points are SE equivalence classes (more than one for each parameter of each model), and the
largest SE in the equivalence class is plotted against the smallest SE in the equivalence class. Note that all points
are on the line of equality. In the right-hand plot, the data points are model parameters (one for each parameter of
each model), and the largest SE for the parameter is plotted against the smallest SE calculated for that parameter.
Note that the data points are visibly above the line of equality, although usually not so far above it as to indicate
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that the different SE calculation formulae give results in different binary orders of magnitude. So, unlike Example 3,
these ad hoc examples do not truly demonstrate the advantages of Huber variances, although they do demonstrate
that the SEs calculated by rglm using different methods are equal when they are supposed to be.

Maximum and minimum SE for SE classes
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Maximum and minimum SE for model parameters
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Figure 1. The results of the validation study for rglm.
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Also see

Manual: [R] glm, [R] robust
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