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Abstract. The package bspline, downloadable from SSC, now has 3 mod-
ules. The first, bspline, generates a basis of Schoenberg B-splines. The second,
frencurv, generates a basis of reference splines, whose parameters in the regres-
sion model are simply values of the spline at reference points on the Xaxis. The
recent addition, flexcurv, is an easy–to–use version of frencurv, and generates
reference splines with automatically–generated sensibly-spaced knots. frencurv

and flexcurv now have the additional option of generating an incomplete basis of
reference splines, with the reference spline for a baseline reference point omitted or
set to zero. This incomplete basis can be completed by adding the standard unit
vector to the design matrix, and can then be used to estimate differences between
values of the spline at the remaining reference points and the value of the spline at
the baseline reference point. Reference splines therefore model continuous factor
variables as indicator variables (or “dummies”) model discrete factor variables.
The method can be extended in a similar way to define factor–product bases, al-
lowing the user to estimate factor–combination means, subset–specific effects, or
even factor interactions, involving multiple continuous and/or discrete factors.

Keywords: st0001, Polynomial, spline, B-spline, interpolation, linear, quadratic,
cubic, multivariate, factor, interaction.

1 Introduction

Splines are frequently used to model non–linear predictive relationships between an X–
variable and a Y –variable, especially when the fundamental mechanisms are unknown
but the effect of X on Y is still thought to be important. For a natural number k, a kth
degree spline is defined using a sequence of positions (or knots) on the X–axis, and has
the features that, in any interval between 2 consecutive knots. the spline is equal to a
polynomial of degree k, and that the first k − 1 derivatives of the spline are continuous
at each knot. Therefore, a spline of degree 0 is a step function with steps at the knots, a
spline of degree 1 is a continuous function linearly interpolated between the knots, and
splines of degree k > 1 are interpolated between the knots as polynomials of degree k.
A number of Stata packages exist for implementing spline models, notably the official
Stata utility mkspline for linear and restricted cubic splines (see [R] mkspline), the
splinegen package developed by Patrick Royston and Gareth Ambler for step, linear
and restricted cubic splines (Royston and Sauerbrei (2007)), and the xblc package for
graphing and tabulating linear splines and unrestricted and restricted cubic splines
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(Orsini and Greenland (2011)).

A frequent problem with spline models is interpreting the parameters. Usually, spline
models are fitted to the data using a basis of spline vectors, whose linear combinations
form a space of splines of the specified degree. The spline vectors are typically included in
the design matrix for a linear or generalized linear model, with or without other vectors
representing the effect on Y of covariates and/or factors other than X . The parameters
corresponding to the vectors of the spline basis are then the co–ordinates of the fitted
spline in these vectors, and can be estimated in the usual way, with confidence limits.
However, these co–ordinates are frequently not easy to explain to non–mathematical
colleagues.

The bspline package, downloadable from SSC, was designed to make this expla-
nation easier. The original version was described in Newson (2000), and contained 2
modules. The bspline module generates a basis of unrestricted Schoenberg B–splines,
whose parameters are not easy to interpret. The frencurv module generates a basis
of reference splines, spanning the same unrestricted spline space, whose corresponding
parameters are values of the spline at reference points on the X–axis, or possibly differ-
ences or ratios between these reference values (also known as “effects”). The method of
frencurv was originally developed, pre–Stata, to model time series of hospital asthma
admissions, which are highly seasonal. An application appears in Newson et al. (1997).

The bspline package has since been upgraded, notably with the addition of a third
module flexcurv, which is designed as a user–friendly front–end for frencurv. The
package also has a manual bspline.pdf, which is downloadable with the package as an
auxiliary file, and which documents the methods and formulas.

This article describes the methods of the bspline package in greater detail, including
the improvements added and the extension to multivariate splines with interactions.
Section 2 illustrates the advantages of splines, with graphics generated using flexcurv.
Section 3 gives the syntax of the package. Section 4 gives the details of the methods and
formulas used. (The casual reader may skip the highly technical Sections 3 and/or 4, at
least at first reading.) Finally, Section 5 gives some practical examples using flexcurv.

2 Reasons for using splines

Splines are used to define a non–linear regression model for an outcome Y with respect
to a continuous predictor X , when the underlying mechanism is not known. We will
illustrate the advantages of splines in the auto dataset, shipped with official Stata,
whose observations correspond to car models. The Y –variable will be mpg (mileage in
miles per US gallon of fuel), and the X–variable will be weight (weight in US pounds).
The do–files used to create the Figures of this section (demo1.do and demo2.do) are
distributed as part of the on–line material for this article.

We start by demonstrating linear splines. Figure 1 shows linear splines with 2, 3,
4 and 5 knots, evenly spaced from 1500 to 5100 pounds (inclusively). The spline with
2 knots (at 1500 and 5100 pounds) is a straight line, over that domain. The spline
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Figure 1: Linear splines for mpg with respect to weight with different numbers of knots.

with 3 knots (at 1500, 3300 and 5100 pounds) is equal to a different straight line in
each interval between consecutive knots, and is continuous (but not differentiable) at the
knots. The splines with 4 knots (at 1500, 2700, 3900 and 5100 pounds) and with 5 knots
(at 1500, 2400, 3300, 4200 and 5100 pounds) have the same features, and are allowed
to be progressively less linear as the number of knots increases. However, they are
still undifferentiable at the knots, and this may seem “unnatural” to non–mathematical
colleagues.

To demonstrate a solution to this problem, we can vary the degree of the splines.
Figure 2 illustrates splines of degree 0 (constant), 1 (linear), 2 (quadratic) and 3 (cubic)
for mileage with respect to weight. Each of these splines has 5 parameters, equal to
their values at the reference points 1500, 2400, 3300, 4200 and 5100 pounds, except
for the constant spline, which only has 4 parameters, equal to its values at the first
4 of these reference points. The spline of degree 0 is simply a step function, and is
not even continuous (only right–continuous) at its knots. The spline of degree 1 is the
linear spline in the lower right subgraph of Figure 1, and, again, is continuous, but not
differentiable, at its knots. However, the splines of degree 2 and 3 are differentiable
throughout the domain, including at their knots, which cannot easily be located.
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Figure 2: Splines of power 0, 1, 2 and 3 for mpg with respect to weight.

So, we see, from Figure 1, that we can improve on a linear model by fitting separate
linear models to intervals between knots, with the lines joined (or spliced) at the knots
to form a spline. And then we see, from Figure 2, that we can improve further by
upgrading to a quadratic or cubic spline, and eliminate the visible joints that upset
non–mathematical colleagues. These features make splines a good model family to
model non–linear predictive associations, if the user has no specific mechanism in mind.

3 The bspline package

3.1 Syntax

bspline
[

newvarlist
] [

if
] [

in
]

, xvar(varname)
[

power(#) knots(numlist)

noexknot generate(prefix) type(
[

type
]

) labfmt(format) labprefix(string)
]

frencurv
[

newvarlist
] [

if
] [

in
]

, xvar(varname)
[

power(#)
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refpts(numlist) noexref omit(#) base(#) knots(numlist) noexknot

generate(prefix) type(
[

type
]

) labfmt(format) labprefix(string)
]

flexcurv
[

newvarlist
] [

if
] [

in
]

, xvar(varname)
[

power(#)

refpts(numlist) omit(#) base(#) include(numlist) krule(knot rule)

generate(prefix) type(
[

type
]

) labfmt(format) labprefix(string)
]

where knot rule is

regular | interpolate

3.2 Description

The bspline package contains 3 commands, bspline, frencurv and flexcurv. bspline
generates a basis of B–splines in the X–variate based on a list of knots, for use in the
design matrix of a regression model. frencurv generates a basis of reference splines, for
use in the design matrix of a regression model, with the property that the parameters
fitted will be values of the spline at a list of reference points. flexcurv is an easy–to–
use version of frencurv, and generates reference splines with regularly–spaced knots, or
with knots interpolated between the reference points. frencurv and flexcurv have the
additional option of generating an incomplete basis of reference splines, which can be
completed by the addition of the standard constant variable used in regression models.
The splines are either given the names in the newvarlist (if present), or (more usually)
generated as a list of numbered variables, prefixed by the generate() option.

3.3 Options for use with bspline and frencurv

xvar(varname) specifies the X–variable on which the splines are based.

power(#) (a non–negative integer) specifies the power (or degree) of the splines. Ex-
amples are zero for constant, 1 for linear, 2 for quadratic, 3 for cubic, 4 for quartic
or 5 for quintic. If absent, zero is assumed.

knots(numlist) specifies a list of at least 2 knots, on which the splines are based. If
knots() is absent, then bspline will initialize the list to the minimum and maxi-
mum of the xvar() variable, and frencurv will create a list of knots equal to the
reference points (in the case of odd–degree splines such as a linear, cubic or quintic)
or midpoints between reference points (in the case of even–degree splines such as
constant, quadratic or quartic). flexcurv does not have the knots() option, as
it automatically generates a list of knots, containing the required number of knots
“sensibly” spaced on the xvar() scale.

noexknot specifies that the original knot list is not to be extended. If noexknot is not
specified, then the knot list is extended on the left and right by a number of extra
knots on each side specified by power(), spaced by the distance between the first
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and last 2 original knots, respectively. flexcurv does not have the noexknot option,
as it specifies the knots automatically.

generate(prefix) specifies a prefix for the names of the generated splines, which (if
there is no newvarlist) will be named as prefix1. . .prefixN, where N is the number of
splines.

type(type) specifies the storage type of the splines generated (float or double). If
type() is given as anything else (or not given), then it is set to float.

labfmt(format) specifies the format to be used in the variable labels for the generated
splines. If absent, then it is set to the format of the xvar() variable.

labprefix(string) specifies the prefix to be used in the variable labels for the generated
splines. If absent, then it is set to "Spline at " for flexcurv and frencurv, and
to "B-spline on " for bspline.

3.4 Options for use with frencurv

refpts(numlist) specifies a list of at least 2 reference points, with the property that, if
the splines are used in a regression model, then the fitted parameters will be values
of the spline at those points. If refpts() is absent, then the list is initialized to two
points, equal to the minimum and maximum of the xvar() variable. If the omit()

option is specified with flexcurv or frencurv, and the spline corresponding to the
omitted reference point is replaced with a standard constant term in the regression
model, then the fitted parameters will be relative values of the spline (differences or
ratios), compared to the value of the spline at the omitted reference point.

noexref specifies that the original reference list is not to be extended. If noexref is not
specified, then the reference list is extended on the left and right by int(power/2)
extra reference points on each side, where power is the value specified by power(),
spaced by the distance between the first and last 2 original reference points, respec-
tively. If noexref and noexknot are both specified, then the number of knots must
be equal to the number of reference points plus power+1. flexcurv does not have
the noexref option, as it automatically chooses the knots and does not extend the
reference points.

omit(#) specifies a reference point, which must be present in the refpts() list (after
any extension requested by frencurv), and whose corresponding reference spline
will be omitted from the set of generated splines. If the user specifies omit(), then
the set of generated splines will not be a complete basis of the set of splines with
the specified power and knots, but can be completed by the addition of a constant
variable, equal to 1 in all observations. If the user then uses the generated splines
as predictor variables for a regression command, such as regress or glm, then the
noconst option should usually not be used, and, if the omitted reference point is
in the completeness region of the basis, then the intercept parameter cons will be
the value of the spline at the omitted reference point, and the model parameters
corresponding to the generated splines will be differences between the values of
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the spline at the corresponding reference points and the value of the spline at the
omitted reference point. (For the definition of the completeness region of a spline,
see Subsection 4.1.) If omit() is not specified, then the generated splines form a
complete basis of the set of splines with the specified power and knots. If the user
then uses the generated splines as predictor variables for a regression command, such
as regress or glm, then the noconst option should be used, and the fitted model
parameters corresponding to the generated splines will be the values of the spline at
the corresponding reference points.

base(#) is an alternative to omit() for use in Stata Versions 11 or higher. It specifies
a reference point, which must be present in the refpts() list (after any extension
requested by frencurv), and whose corresponding reference spline will be set to
zero. If the user specifies base(), then the set of generated splines will not be a
complete basis of the set of splines with the specified power and knots, but can be
completed by the addition of a constant variable, equal to 1 in all observations. The
generated splines can then be used in the design matrix by a Stata Version 11 (or
higher) estimation command.

3.5 Options for use with flexcurv only

Note that flexcurv uses all the options available to frencurv, except for knots(),
noexknot, and noexref.

include(numlist) specifies a list of additional numbers to be included within the bound-
aries of the completeness region of the spline basis, in addition to the available values
of the xvar() variable and the refpts() values (if provided). This allows the user
to specify a non–default infimum and/or supremum for the completeness region of
the spline basis. If include() is not provided, then the completeness region will ex-
tend from the minimum to the maximum of the values either available in the xvar()
variable or specified in the refpts() list.

krule(knot rule) specifies a rule for generating knots, based on the reference points,
which may be regular (the default) or interpolate. If regular is specified,
then the knots are spaced regularly over the completeness region of the spline. If
interpolate is specified, then the knots are interpolated between the reference
points, in a way that produces the same knots as krule(regular) if the reference
points are regularly spaced. Whichever krule() option is specified, any extra knots
to the left of the completeness region are regularly spaced with a spacing equal to
that between the first 2 knots of the completeness region, and any extra knots to the
right of the completeness region are regularly spaced with a spacing equal to that
between the last 2 knots of the completeness region. Therefore, krule(regular)
specifies that all knots will be regularly spaced, whether or not the reference points
are regularly spaced, whereas krule(interpolate) specifies that the knots will be
interpolated between the reference points in a way that will cause reference splines
to be definable, even if the reference points are not regularly spaced.
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3.6 Saved results

bspline, frencurv and flexcurv save the following results in r():

Scalars
r(xsup) upper bound of completeness re-

gion
r(xinf) lower bound of completeness re-

gion
r(nincomp) number of X–values out of com-

pleteness region
r(nknot) number of knots
r(nspline) number of splines
r(power) power (or degree) of splines

Macros
r(knots) final list of knots
r(splist) varlist of generated splines
r(labfmt) format used in spline variable la-

bels
r(labprefix) prefix used in spline variable la-

bels
r(type) storage type of splines (float or

double)
r(xvar) X–variable specified by xvar()

option

Matrices
r(knotv) row vector of knots

frencurv and flexcurv save all of the above results in r(), and also the following:

Scalars
r(omit) omitted reference point specified

by omit()
r(base) base reference point specified by

base()

Macros
r(refpts) final list of reference points

Matrices
r(refv) row vector of reference points

The result r(nincomp) is the number of values of the xvar() variable outside the
completeness region of the space of splines defined by the reference splines or B–splines.
The number lists r(knots) and r(refpts) are the final lists after any left and right
extensions carried out by bspline, frencurv or flexcurv, and the vectors r(knotv)
and r(refv) contain the same values in double precision (mainly for programmers). The
scalars r(xinf) and r(xsup) are knots, such that the completeness region is r(xinf) ≤
x ≤ r(xsup) for positive–degree splines and r(xinf) ≤ x < r(xsup) for zero–degree
splines.

In addition, bspline, frencurv and flexcurv save variable characteristics for the
output spline basis variables. The characteristic varname[xvar] is set by bspline,
frencurv and flexcurv to be equal to the input X–variable name set by xvar(). The
characteristics varname[xinf] and varname[xsup] are set by bspline to be equal
to the infimum and supremum, respectively, of the interval of X–values for which the
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B–spline is non–zero. The characteristic varname[xvalue] is set by frencurv and
flexcurv to be equal to the reference point on theX–axis corresponding to the reference
spline.

4 Methods and formulas

This section is intended mainly as a reference for the extensive family of methods and
formulas used by the bspline package. Less mathematically–minded readers may skip
or skim through this section and progress to the Examples.

4.1 B–splines

By definition, a kth degree spline is defined with reference to a set of q knots s1 < s2 <
. . . < sq, dividing the X–axis into half–open intervals of the form [si, si+1). In each of
those intervals, the regression is a kth degree polynomial in X (usually a different one
in each interval), but the polynomials in any two contiguous intervals have the same
jth derivatives at the knot separating the two intervals, for j from zero to k − 1. By
convention, the 0th derivative is the function itself, so a spline of degree 0 is simply a
right–continuous step function, and a first–degree spline is a simple linear interpolation
of values between the knots.

Splines can be defined using plus–functions. For a power k and a knot s, the kth
power plus–function at s is defined as

Pk(x; s) =

{

(x− s)k, x ≥ s,
0, x < s

(1)

In Stata, we can calculate the plus–functions of power 1 corresponding to a sequence of
knots by using mkspline with the marginal option (see [R] mkspline).

The plus–functions are a basis for the space of splines. That is to say, for any kth
degree spline S(·), with knots s1 < s2 < . . . < sq, there exists a q–vector α such that,
for any x,

S(x) =

q
∑

j=1

αjPk(x; sj) (2)

Based on (2), we might try to fit a spline model by creating a design matrix of plus–
functions and estimating the αj . However, the high degree of correlation between the
plus–functions may cause wide confidence intervals. Moreover, it is not easy to explain
to non–mathematical colleagues the parameters that these wide confidence intervals are
intended to estimate.

B–splines are an alternative basis of the splines with a given set of knots, invented
to solve the first of these problems. Ziegler (1969) defines the B–spline for a set of k+2
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knots s1 < s2 < ... < sk+2 as

B(x; s1, . . . , sk+2) = (k + 1)

k+2
∑

j=1





∏

1≤h≤k+2,h 6=j

(sh − sj)





−1

Pk(x; sj) (3)

The B–spline (3) is positive for x in the half–open interval [s1, sk+2), and zero for
other x. If the sj are part of an extended set of knots extending forwards to +∞ and
backwards to −∞, then the set of B–splines based on sets of k + 2 consecutive knots
forms a basis of the set of all kth–degree splines defined on the full set of knots. For
the purposes of bspline, I have taken the liberty of redefining B–splines by scaling the
B(x; s1, . . . , sk+2) of (3) by a factor equal to the mean distance between two consecutive
knots, to arrive at the scale–invariant B–spline

A(x; s1, . . . , sk+2) =
sk+2 − s1
k + 1

B(x; s1, . . . , sk+2) =

{

∑k+1
j=1

∏k+2
h=1 φjh(x), if s1 ≤ x < sk+2,

0, otherwise
(4)

where the functions φjh(·) are defined by

φjh(x) =







1, if h = j,
(sk+2 − s1)/(sh − sj), if h = j + 1,
P1(x; sj)/(sh − sj), otherwise

(5)

The scaled B–spline 4) has the advantage that it is dimensionless, being a sum of
products of the dimensionless quantities φhj(x). That is to say, it is unaffected by
the scale of units of the X–axis, and therefore has the same values, whether x is time
in millennia or time in nanoseconds. The original Ziegler B–spline 3), by contrast, is
expressed in units of x−1. Therefore, if the scaled B–spline 4) appears in a design
matrix, then its regression coefficient is expressed in units of the Y –variate, whereas,
if the Ziegler B–spline 3) appears in a design matrix, then its regression coefficient is
expressed in Y –units multiplied by X–units, and will be difficult to interpret, even for
a mathematician.

Given n data points, a Y –variate, an X–covariate, and a set of q+ k+1 consecutive
knots sh < . . . < sh+q < . . . < sh+q+k, we can regress the Y –variate with respect to a
kth degree spline in X by defining a design matrix V , with one row for each of the n
data points and one column for each of the first q knots, such that

Vij = A(Xi; sh+j−1, . . . , sh+j+k) (6)

We can then regress the Y –variate with respect to the design matrix V , and compute a
vector β of regression coefficients, such that V β is the fitted spline. The parameter βj

measures the contribution to the fitted spline of the B–spline originating at the knot
sh+j−1 and terminating at the knot sh+j+k. There will be no stability problems such as
we are likely to have with the original plus–function basis, as each B–spline is bounded,
and localized in its effect.

It is important to define enough knots. If the sequence of knots {sj} extends to +∞
on the right and to−∞ on the left, then the kth degreeB–splinesA(·; sh+j−1, . . . , sh+j+k)
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on sets of k+2 consecutive knots are a basis for the full space of kth degree splines on the
full set of knots. If S(·) is one of these splines, and [sj , sj+1) is an interval between con-
secutive knots, then the values of S(x) in the interval are affected by the k+1 B–splines
originating at the knots sj−k, . . . , sj and terminating at the knots sj+1, . . . , sj+k+1. It
follows that, if we start by specifying a sequence of knots s0 < . . . < sm, and we want
to fit a spline for values of x in the interval [s0, sm), then we must also use k extra knots
s−k < . . . < s−1 to the left of s0, and k extra knots sm+1 < . . . < sm+k to the right
of sm, to define the m + k consecutive B–splines affecting S(x) for x in the interval
[s0, sm). These m + k B–splines originate at the knots s−k, . . . , sm−1, and terminate
at the knots s1, . . . , sm+k, respectively. Any spline S(·), in the full space of kth degree
splines defined using the full set of knots, is equal to a linear combination of these m+k
B–splines in the interval [s0, sm] (in the case of positive–degree splines, which are con-
tinuous) or [s0, sm) (in the case of zero–degree splines, which are only right–continuous).
We will refer to this interval as the completeness region for splines which are linear
combinations of these m+ k B–splines. These linear combinations are zero for x < s−k

and x ≥ sm+k, and “incomplete” in the outer regions (s−k, s0) and (sm, sm+k), in which
the spline is “returning to zero”.

bspline and frencurv assume, in default, that the knots() option specified by
the user is only intended to span the completeness region, and that the specified knots
correspond to the s0, . . . , sm. (flexcurv has no knots() option, as it defines its own
“sensibly–spaced” knots, which are then input to frencurv.) In default, bspline and
frencurv generate k extra knots on the left, with spacing equal to the difference between
the first two knots, and k extra knots on the right, with spacing equal to the difference
between the last two knots. If the user specifies the option noexknot, then bspline

assumes that the user has specified the full set of knots, corresponding to s−k, . . . , sm+k,
and does not generate any new knots.

4.2 Reference splines

If we have calculated the n× q matrix V of B–splines as in (6), and we also have a set
of q reference X–values r1 < r2 < . . . < rq, then we might prefer to re–parameterize the
spline by its values at the rj . To do this, we first calculate a q × q square matrix W ,
defined such that

Wij = A(ri; sh+j−1, . . . , sh+j+k) (7)

the value of the jth B–spline at the ith reference point. If β is the column vector of
regression coefficients with respect to the B–splines in V , and γ is the column vector of
values of the spline at the reference points, then it follows that

γ = Wβ (8)

If W is invertible, then the vector of values of the fitted spline at the data points is

V β = VW−1Wβ = VW−1γ = Zγ (9)

where Z = VW−1 is a transformed design matrix, whose columns contain values of a
set of reference splines, for the estimation of the reference–point spline values γ.
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Note that the argument of (9) will still apply, whether V and Z are matrices of
discrete column vectors or matrices of continuous functions on the real line. Note, also,
that the argument still applies if V is a spline basis other than a B–spline basis, such
as a restricted “natural” spline basis of the kind discussed by Royston and Sauerbrei
(2007).

The choice of reference points and knots is open to the user, and constrained mainly
by the requirement that the matrix W is invertible. This implies that each of the q
B–splines must be positive for at least one of the q reference values, and that each
reference value must have at least one positive B–spline value. frencurv and flexcurv

both start with a list of reference points, and (at least by default) choose the knots
accordingly, with the aim of satisfying this requirement.

4.3 Knot choice by frencurv

In the default method used by frencurv (if the user provides no knots() option), we try
to create a one–to–one correspondence between the reference points and the B–splines,
with the feature that each reference point is in the middle of the non–zero range of its
corresponding B–spline. This is done by ensuring that each reference point is equal
to the central knot of its B–spline in the case of odd–degree splines (such as linear,
cubic or quintic splines), and in between the 2 central knots of its B–spline in the case
of even–degree splines (such as step, quadratic or quartic splines). This choice has the
consequence that, for a spline of degree k, there will be int(k/2) reference points outside
the spline’s completeness region on the left, and another int(k/2) reference points
outside the spline’s completeness region on the right, where int(·) is the truncation
(or “integer–part”) function. The parameters corresponding to these “extra” reference
points will not be easy to explain to non–mathematicians, as they describe the behavior
of the spline as it returns to zero outside its completeness region. However, for a
quadratic or cubic spline, there is only one such external reference Y –value at each end
of the completeness region.

By default, frencurv starts with the reference points originally provided, and chooses
knots “appropriately”. For an odd–degree spline, the knots are initialized to the orig-
inal reference points themselves. For an even–degree spline, the knots are initialized
to mid–points corresponding to the original reference points, as follows. If the original
reference points are r1 < . . . < rm, then the original knots s0 < . . . < sm are initialized
to

sj =







r1 − (r2 − r1)/2, if j = 0,
(rj + rj+1)/2, if 1 ≤ j ≤ m− 1,
rm + (rm − rm−1)/2, if j = m

(10)

frencurv assumes, by default, that the reference points initially provided are all in the
completeness region, and adds int(k/2) extra reference points to the left, spaced by the
difference between the first two original reference points, and int(k/2) extra reference
points to the right, spaced by the difference between the last two original reference
points, where k is specified by the power() option. If noexref is specified, then the
original refpts() list is assumed to be the complete list of reference points, and it is
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the user’s responsibility to choose sensible ones. In either case, the original knots are
extended on the left and right as described above, unless noexknot is specified.

4.4 Knot choice by flexcurv

flexcurv uses an alternative method to define knots from reference points, which guar-
antees that the reference points, the values of the X–variable specified by xvar(), and
(optionally) a list of other X–values specified by the include() option will be in the
completeness region of the generated spline basis. It also guarantees that the knots will
be “sensibly” spaced, using a definition of sensibility specified by the krule() option.

Suppose that there are q reference points r1, . . . , rq provided by the user in the
refpts() option. flexcurv first calculates the numbers xinf and xsup as the minimum
and maximum, respectively, of all values present in the xvar() variable, the refpts()

list or the include() list. The numbers xinf and xsup will be the infimum and the
supremum, respectively, of the completeness region of the spline basis. The number
of intervals between adjacent knots in and bordering the completeness region is then
m = q− k. The original knots in and bordering the completeness region are s0, . . . , sm.

If the user specifies krule(regular) (the default), then these sj are spaced regularly,
and defined by the simple formula

sj =
j

m
xsup +

m− j

m
xinf (11)

If the user specifies krule(interpolate), then these sj are interpolated between the
reference points, using a more complicated formula. If the spline power k is 0, we define
s0 = xinf , sm = xsup, and sj = rj+1 for other j. Otherwise, we first define, for each j
from 0 to m,

σ(j) = 1 + j(q − 1)/m, π(j) = int[σ(j)], ρ(j) = σ(j)− π(j) (12)

We then define the sj as

sj =







xinf , j = 0,
xsup, j = m,
[1− ρ(j)] rπ(j) + ρ(j) rπ(j)+1, otherwise

(13)

This formula ensures that the knots sj are interpolated between the reference points in
a way which will be regularly spaced, if the reference points themselves are regularly
spaced from r1 = xinf to rq = xsup. However, if the reference points are not regularly
spaced, then the user can specify krule(interpolate) to ensure that the reference
splines will still be definable, which may possibly not be the case if the user specifies
krule(regular) with irregularly–spaced reference points.

flexcurv then calls frencurv to generate the reference splines, with the reference
points r1, . . . , rq as the refpts() option, and the knots s0, . . . , sm as the knots() option,
with the noexref option but without the noexknot option. This implies that, whichever
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krule() option is specified, any extra knots to the left of the completeness region will
be regularly spaced by the distance between the first 2 internal knots, and any extra
knots to the right of the completeness region will be regularly spaced by the distance
between the last 2 internal knots. Therefore, krule(regular) specifies that the knots
inside and outside the completeness region are regularly spaced, so that any pair of
adjacent knots inside or outside the completeness region is separated by (xsup−xinf)/m
X–axis units. Both krule() options result in the generation of a basis of q reference
splines, corresponding to the respective reference points, with a completeness region
xinf ≤ x ≤ xsup (for positive–degree splines) or xinf ≤ x < xsup (for zero–degree
splines). Note that, in the case of zero–degree splines, the user must specify xsup in the
include() option, as a number strictly greater than any reference points and xvar()

values, because xsup is outside the completeness region for a zero–degree spline, which
is a right–continuous step function with discontinuities at its knots, which include xsup.

4.5 The omit() and base() options

From the definition of a reference spline basis, as a basis of its corresponding spline
space, it follows that each reference spline is equal to 1 at its own reference point and
equal to 0 at all other reference points. In more formal language, if we consider the
matrix Z of reference splines in (9), and suppose that, for some reference point rh and
some i from 1 to n, Xi = rh, then it follows that, for each jth column of Z,

Zij =

{

1, j = h
0, j 6= h

(14)

(This follows because column h of Z is in the spline space spanned by Z, with the hth
co–ordinate 1 and all other co–ordinates 0, and the sum of columns h and j is in the
same spline space, with the hth and jth co–ordinates 1 and all other co–ordinates 0,
and both of these splines are 1 where Xi = rh. Graphic examples of reference splines
of degrees 0 to 3, illustrating this property, are given in Newson (2011).)

As the unit function is itself a spline (of any degree), it also follows that its coordi-
nates in the reference splines must all be 1, implying that a basis of reference splines
must sum to 1, at least in the completeness region of their spline space.

A consequence of these properties is that, if we start with a basis of reference splines,
exclude a reference spline corresponding to a base reference point rb, and include the
unit function, then the resulting set of splines is an alternative basis of the same spline
space. Any spline S(·) in that spline space will have co–ordinates in this alternative
basis. The co–ordinate of S(·) in the unit function will be equal to S(rb), whereas the
co–ordinate of S(·) in any of the surviving reference splines, corresponding to another
reference point rj , will be equal to S(rj)− S(rb).

It follows that we can replace a baseline column b of Z with a unit vector to derive an
alternative design matrix Z [b]. This alternative design matrix can be defined formally
as

Z
[b]
ij =

{

1, j = b,
Zij , otherwise

(15)
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If this design matrix is used by an estimation command, then the parameter corre-
sponding to the unit vector will be the intercept parameter cons, equal to the value of
the spline at the base reference point rb, and the other parameters will be differences
between the value of the spline at the reference point rh and the value of the spline
at the base reference point rb, for h 6= b. Therefore, reference splines play the role for
continuous “X–factors” that indicator (or “dummy”) variables play for discrete factors.
(These indicator variables are generated by the xi: prefix in Stata Version 10, and (in
virtual form) by factor varlists in Stata Versions 11 or higher. They are really reference
splines of degree zero, with integer reference points and knots.)

To perform the substitution (15), flexcurv and frencurv have an option omit()

for users of Stata Version 10, causing the base reference spline to be dropped, and an
option base() for users of Stata Versions 11 or higher, causing the base reference spline
to be set to zero. In either case, the reference splines can be included in the design
matrix of an estimation command, in this case without the noconst option, because we
want to add the unit vector to the design matrix.

4.6 Multivariate splines and interactions

Reference splines are a generalization, to continuous factors, of indicator functions for
discrete factors. This generalization extends to multi–factor models, whose parameters
frequently include conditional means for combinations of discrete factor levels, or even
“interactions”, defined informally as “differences between differences”. (More formally,
interactions are defined recursively, so that an interaction of order 0 is a difference, and
an interaction of order k + 1 is a difference between interactions of order k.)

Multi–factor models frequently use product bases, derived from 2 or more input
bases of indicator functions, and then included in a design matrix. The product bases
are created by a matrix operator which we will call the factor–product operator.
Given a n× q matrix F and a n× p matrix G, this operator

⊗

is defined as

F
⊗

G =

q
⊕

j=1

(F∗j:*G) (16)

where
⊕

is the multi–fold version of the horizontal matrix concatenation operator
represented by the comma operator in Mata ( see [M-2] op join), :* is the elementwise
product operator represented by :* in Mata ( see [M-2] op colon), and F∗j represents
the jth column of F . The factor–product operator

⊗

corresponds to the * operator
in xi: interaction varlists, or to the # operator in factor varlists in Stata Versions 11
or higher. It can also be implemented for a pair of Stata input variable lists using the
prodvars package, downloadable from SSC, which generates the output matrix as a list
of new variables.

The factor–product operator is traditionally applied to matrices of factor–level iden-
tifier variables, but may equally be applied in the same way to matrices of reference
splines. To see this, we will replace F in (16) with the matrices Z of (9) and Z [b] of (15),
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and suppose that G is an arbitrary design sub–matrix of arbitrary covariates, which may
or may not include a unit vector.

We first consider the case F = Z, and its factor–product Z
⊗

G, and imagine that
this factor–product matrix is applied to a column vector of parameters

ζ =

q
⊙

j=1

ζ(j) (17)

where
⊙

is the multi–fold version of the vertical matrix concatenation operator rep-
resented by \ in Mata ( see [M-2] op join), and each ζ(j) is a column vector of p
parameters, corresponding to the columns of G. For a reference point rh, if the ith
X–value is Xi = rh , then it follows from (14) that, for each j,

[Z∗j:*G]
ij
=

{

Gij , j = h
0, j 6= h

(18)

It follows that the column vector ζ(h) is a vector of parameters corresponding to the
covariates in G for a special model in force when the X–variate is equal to the reference
point rh. Therefore, the full parameter vector ζ is a combined vector of parameters for
a composite model derived from q sub–models, each corresponding to X–values equal
to one of the q reference points. The composite model predicts interpolated values at
non–reference X–values, and Z

⊗

G is its design matrix.

We now consider the case F = Z [b], and its factor–product Z [b]
⊗

G, and assume
that the corresponding parameter vector is ξ =

⊙q

j=1 ξ
(j), where each ξ(j) is a column

vector of p parameters. This time, one reference point rb is the base reference point, and
(15) implies that the corresponding sub–matrix Z∗b:*G is a copy of G. The other jth
sub–matrices conform to (18) for rows i in which the X–value Xi is equal to a reference
point rh. It follows that, for any such row i, we have the identity

[(

Z [b]
⊗

G
)

ξ
]

i
=

{
[

Gξ(b)
]

i
, h = b

[

Gξ(b)
]

i
+
[

Gξ(h)
]

i
, h 6= b

(19)

In other words, the parameters ξ(b) belong to a sub–model with design matrix G for
rows i where Xi = rb, and the parameters ξ(h), where h 6= b, are differences between the
parameters of a sub–model with the design matrix G for rows i where Xi = rh and the
corresponding parameters of the sub–model with the same design matrix G for rows i
where Xi = rb.

As ζ and ξ are alternative parameterizations of the same super–model, it follows (at
least if the factor–product columns are linearly independent) that, for each j from 1 to
q, the parameters conform to the relation

ξ(j) =

{

ζ(b), j = b

ζ(j) − ζ(b), j 6= b
(20)

So, if the ζ–parameters are means, then the corresponding ξ–parameters are differ-
ences. And, if the ζ–parameters are differences, then the corresponding ξ–parameters
are “interactions”.
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We see that reference–spline bases (whether or not they are modified to include a
unit vector) can be combined non–additively (or “interactively”) to form factor–product
bases, in the same way in which identifier–variable bases can be combined. Note that
the matrix G may also contain reference splines in variables other than X , allowing the
possibility of non–additive multivariate splines. Note, also, that reference splines may
alternatively be combined with other covariates in an additive (or “non–interactive”)
way.

5 Examples

These examples demonstrate the easy–to–use flexcurv module, and are distributed in
the file example1.do, which is part of the online material for this article. The more
comprehensive bspline and frencurv modules are special tools for special occasions,
especially when the user has a prior reason for choosing a certain set of knots. Examples
for these modules appear in the online help, and in the manual bspline.pdf, distributed
with the package as an ancillary file.

5.1 The cubic spline of Figure 2

Our first example is the cubic spline illustrated in the lower right subgraph of Figure 2.
After loading the auto data, we generate the spline basis as follows:

. flexcurv, xvar(weight) power(3) refpts(1500(900)5100) generate(cs_)

. describe cs_*

storage display value
variable name type format label variable label

cs_1 float %8.4f Spline at 1,500
cs_2 float %8.4f Spline at 2,400
cs_3 float %8.4f Spline at 3,300
cs_4 float %8.4f Spline at 4,200
cs_5 float %8.4f Spline at 5,100

We see that the 5 cubic reference splines cs 1 to cs 5 have variable labels, which inform
the user of the reference point to which each reference spline corresponds. We then fit
the regression model as follows, using the noconst option:

. regress mpg cs_*, noconst nohead

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

cs_1 33.86387 3.733922 9.07 0.000 26.4149 41.31284
cs_2 24.6141 .7811342 31.51 0.000 23.05578 26.17242
cs_3 18.79659 .6841035 27.48 0.000 17.43184 20.16134
cs_4 15.47252 1.113113 13.90 0.000 13.25191 17.69312
cs_5 10.05772 5.322653 1.89 0.063 -.5606797 20.67613

The parameters corresponding to the reference splines are the values of the spline at
the corresponding reference points.
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Alternatively, we could fit the same model with a different parameterization, with
an intercept equal to the mileage expected at the central reference point of 3300 US
pounds, and effects on mileage of weights equal to the other reference poimts. This is
done by using the base() option to generate a slightly different spline basis, and then
using regress without the noconst option:

. flexcurv, xvar(weight) power(3) refpts(1500(900)5100) base(3300) generate(bcs
> _)

. describe bcs_*

storage display value
variable name type format label variable label

bcs_1 float %8.4f Spline at 1,500
bcs_2 float %8.4f Spline at 2,400
bcs_3 byte %8.4f Spline at 3,300
bcs_4 float %8.4f Spline at 4,200
bcs_5 float %8.4f Spline at 5,100

. regress mpg bcs_*, nohead
note: bcs_3 omitted because of collinearity

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

bcs_1 15.06729 3.577033 4.21 0.000 7.931301 22.20327
bcs_2 5.817516 1.078029 5.40 0.000 3.666908 7.968124
bcs_3 0 (omitted)
bcs_4 -3.324069 1.438353 -2.31 0.024 -6.193505 -.4546328
bcs_5 -8.738858 5.192156 -1.68 0.097 -19.09693 1.61921
_cons 18.79659 .684103 27.48 0.000 17.43184 20.16134

Note that the spline bcs 3 has storage type byte, because it corresponds to the base
reference weight of 3300 US pounds, and has therefore been set to zero and compressed.
regress then omits the corresponding parameter because of collinearity, leaving an
intercept (a mileage) and the effects of the other reference weights (mileage differences).

5.2 Polynomials as splines

By the definition of a spline, a polynomial limited to a bounded interval is a special
case of a spline, with knots at the boundaries. And all polynomials fitted to real–world
data by real–world scientists are restricted to bounded intervals.

It is well–known that a degree–k polynomial can be specified by k+1 bivariate points
on the curve, each containing a reference point on the X–axis and its corresponding
Y –value. flexcurv can implement this specification method, with the possibility of
confidence intervals for the reference Y –values. These reference Y –values are easier to
explain to non–mathematical colleagues than the usual parameters for a polynomial
model.

In the auto data, we might use flexcurv to regress mpg with respect to weight,
using a quadratic model, as follows:

. flexcurv, xvar(weight) power(2) refpts(2000 3000 4000) generate(qs_)

. describe qs_*
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storage display value
variable name type format label variable label

qs_1 float %8.4f Spline at 2,000
qs_2 float %8.4f Spline at 3,000
qs_3 float %8.4f Spline at 4,000

. regress mpg qs_*, noconst nohead

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

qs_1 28.16455 .7356117 38.29 0.000 26.69779 29.63132
qs_2 20.62851 .5388504 38.28 0.000 19.55407 21.70295
qs_3 15.74126 .6508289 24.19 0.000 14.44354 17.03897

We start by using flexcurv to generate a basis of 3 quadratic reference splines in
weight, at reference points 2000, 3000 and 4000 US pounds, respectively, and then
describe them. Again, each reference spline has a variable label, in case the user for-
gets its reference point. Then, we use regress, with the noconst option, to estimate the
values (in miles per gallon) of the quadratic polynomial at these reference points. These
parameters are easier to understand than the ones provided if we fit the same quadratic
model using the command regress mpg c.weight c.weight#c.weight, nohead (not
shown). The fitted and observed values, and estimates and confidence limits for the pa-
rameters, are plotted in Figure 3, which was produced using the SSC packages parmest
and eclplot (Newson (2003)).
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Figure 3: Quadratic regression of mpg with respect to weight.

Alternatively, we can fit the same model using a third parameterization, namely the
base level of mpg for cars weighing 2000 pounds and the effects on mpg of increasing the
weight to 3000 and 4000 pounds, respectively:

. flexcurv, xvar(weight) power(2) refpts(2000 3000 4000) ///
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> base(2000) generate(bqs_)

. describe bqs_*

storage display value
variable name type format label variable label

bqs_1 byte %8.4f Spline at 2,000
bqs_2 float %8.4f Spline at 3,000
bqs_3 float %8.4f Spline at 4,000

. regress mpg bqs_*, nohead
note: bqs_1 omitted because of collinearity

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

bqs_1 0 (omitted)
bqs_2 -7.536052 .8812637 -8.55 0.000 -9.293242 -5.778862
bqs_3 -12.4233 1.029623 -12.07 0.000 -14.47631 -10.37029
_cons 28.16456 .7356117 38.29 0.000 26.69779 29.63133

This time, the spline bqs 1 at 2000 pounds has storage type byte, because it represents
the base() option, and has therefore been set to zero and compressed. The regress

command is called without the noconst option, and outputs a parameter cons, equal
to the base mileage of 28.16 miles per gallon expected for 2000–pound cars, an omitted
parameter for bqs 1 representing the zero effect of this base mileage (with zero confi-
dence limits), and the 2 negative effects on mileage of increasing the weight to 3000 and
4000 pounds, respectively.

Of course, we can add other terms to this model to represent the additive (or
“non–interactive”) effects of other covariates and/or factors, such as the binary variable
foreign, indicating non–US origin:

. regress mpg foreign bqs_*, nohead
note: bqs_1 omitted because of collinearity

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

foreign -2.2035 1.059246 -2.08 0.041 -4.316101 -.0908999
bqs_1 0 (omitted)
bqs_2 -8.617167 1.005957 -8.57 0.000 -10.62349 -6.610849
bqs_3 -14.05203 1.275017 -11.02 0.000 -16.59497 -11.50909
_cons 29.75756 1.050386 28.33 0.000 27.66263 31.85249

The parameter for foreign is negative, and tells the familiar auto data story that non–
US cars travel fewer miles per gallon (on average) than US cars of the same weight,
although US cars are usually heavier than non–US cars.

5.3 Linear splines with unevenly–spaced reference points

Alternatively, we might fit a linear spline to the same data, with the reference points
unevenly spaced. If splines are linear and/or reference points are unevenly spaced, then
it is a good idea to use the option krule(interpolate), for two reasons. First, if the
spline is linear, then (13) ensures that each reference point will also be a knot, with
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the possible exceptions of the first and last reference points if the completeness region
extends beyond these. Second, if the reference points are unevenly spaced, then (13)
ensures that the reference splines will exist, because the matrix W of (7) will have no
zero rows or columns, which it might possibly have (and therefore be singular), if we
use the default krule(regular).

We might fit a linear spline as follows:

. flexcurv, xvar(weight) power(1) krule(interpolate) ///
> refpts(1500 2000 2500 3000 4000 5000) generate(ls_)

. describe ls_*

storage display value
variable name type format label variable label

ls_1 float %8.4f Spline at 1,500
ls_2 float %8.4f Spline at 2,000
ls_3 float %8.4f Spline at 2,500
ls_4 float %8.4f Spline at 3,000
ls_5 float %8.4f Spline at 4,000
ls_6 float %8.4f Spline at 5,000

. regress mpg ls_*, noconst nohead

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

ls_1 26.34741 4.410006 5.97 0.000 17.54738 35.14744
ls_2 30.16913 1.149293 26.25 0.000 27.87575 32.46251
ls_3 21.69784 1.32861 16.33 0.000 19.04664 24.34904
ls_4 20.9661 1.096847 19.11 0.000 18.77738 23.15483
ls_5 15.56144 1.071791 14.52 0.000 13.42271 17.70016
ls_6 12.45729 2.860836 4.35 0.000 6.748579 18.166

The fitted and observed values for this model, and confidence intervals for the pa-
rameters, are displayed in Figure 4. Note that the first and last reference points are
below the minimum and above the maximum car weight, respectively, so the reference
points are also the knots, and the fitted values are interpolated linearly between them.

Again, we might reparameterize the same model to measure differences between the
spline at each reference point and the spline at the base reference point, which we will
set to the “mid–range” value of 3000 pounds:

. flexcurv, xvar(weight) power(1) krule(interpolate) ///
> refpts(1500 2000 2500 3000 4000 5000) base(3000) generate(bls_)

. describe bls_*

storage display value
variable name type format label variable label

bls_1 float %8.4f Spline at 1,500
bls_2 float %8.4f Spline at 2,000
bls_3 float %8.4f Spline at 2,500
bls_4 byte %8.4f Spline at 3,000
bls_5 float %8.4f Spline at 4,000
bls_6 float %8.4f Spline at 5,000

. regress mpg bls_*, nohead
note: bls_4 omitted because of collinearity
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Figure 4: Linear spline regression of mpg with respect to weight.

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

bls_1 5.381306 4.590998 1.17 0.245 -3.779888 14.5425
bls_2 9.203024 1.505075 6.11 0.000 6.199692 12.20636
bls_3 .7317385 1.968027 0.37 0.711 -3.195399 4.658876
bls_4 0 (omitted)
bls_5 -5.404668 1.872296 -2.89 0.005 -9.140777 -1.66856
bls_6 -8.508816 2.918556 -2.92 0.005 -14.3327 -2.684928
_cons 20.9661 1.096847 19.11 0.000 18.77738 23.15483

It should be stressed that there are alternative parameterizations of linear splines,
which also produce sensible parameters. The mkspline package of official Stata gener-
ates a basis of linear splines, whose corresponding parameters are either the local slopes
in the intervals between knots, or the differences between pairs of these local slopes in
consecutive intervals between knots. See [R] mkspline for the practical details of this
method.

5.4 Multi–factor cubic splines

Alternatively, we might fit a multi–factor model. If we add the binary factor variable
odd, created by typimg generate odd=mod( n,2) and equal to 1 for odd–numbered cars
and to 0 for even–numbered cars, then we might want to measure separate effects of car
weight on car mileage in odd–numbered and even–numbered cars, using a two–factor
model, with weight as a continuous factor and odd as a discrete factor. To do this, we
use factor–product bases, as we would if we had 2 discrete factors.

Two useful packages for this purpose are prodvars and fvprevar, both download-
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able from SSC. The prodvars package inputs 2 varlists, which function as the columns
of F and G, respectively, in (16), and outputs the factor–product matrix in a generated
newvarlist, with names and/or labels and/or characteristics generated by user–specified
rules. The fvprevar package is an alternative version of the fvrevar command of of-
ficial Stata (see [R] fvrevar), and functions as an updated version of the xi: prefix
used by Stata Version 10 users (see [R] xi). Like fvrevar, fvprevar inputs a factor
varlist. However, unlike fvrevar, it generates an output list of permanent variables,
instead of an output list of temporary variables. These permanent output variables
can then be input to prodvars, together with a list of reference splines, to generate a
product–variable list of “interaction” reference splines.

In our case, we might start by using flexcurv to generate a list of cubic reference
splines a *, whose corresponding parameters might be differences in mileage between
cars with a non–base reference weight and cars with a base reference weight of 1760 US
pounds:

. flexcurv, xvar(weight) power(3) refpts(1760(616)4840) base(1760) ///
> generate(a_) labprefix(weight==) labfmt(%9.0g)

. describe a_*

storage display value
variable name type format label variable label

a_1 byte %8.4f weight==1760
a_2 float %8.4f weight==2376
a_3 float %8.4f weight==2992
a_4 float %8.4f weight==3608
a_5 float %8.4f weight==4224
a_6 float %8.4f weight==4840

(Note the use of the labprefix() option to specify a non–standard prefix for the spline
variable labels, and the labfmt() option to eliminate the commas from the reference–
point values in these labels.) We then use fvprevar to generate a list of indicator (or
“dummy”) variables, indicating even–numbered and odd–numbered cars, respectively:

. fvprevar ibn.odd, generate(b_)

. describe b_*

storage display value
variable name type format label variable label

b_1 byte %9.0g 0bn.odd
b_2 byte %9.0g 1.odd

Note that the generated output variables b *, specified by the generate() option, have
variable labels indicating the expanded factor varlist elements to which they correspond.

We can now use prodvars to input the 2 lists of variables a * and b *, which play
the role of F and G, respectively,in (16), generating a list of output variables c *, which
contain the factor–product variables:

. prodvars a_*, rvarlist(b_*) generate(c_) lseparator(" & ")

. describe c_*

storage display value
variable name type format label variable label

c_1 byte %10.0g weight==1760 & 0bn.odd
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c_2 byte %10.0g weight==1760 & 1.odd
c_3 double %10.0g weight==2376 & 0bn.odd
c_4 double %10.0g weight==2376 & 1.odd
c_5 double %10.0g weight==2992 & 0bn.odd
c_6 double %10.0g weight==2992 & 1.odd
c_7 double %10.0g weight==3608 & 0bn.odd
c_8 double %10.0g weight==3608 & 1.odd
c_9 double %10.0g weight==4224 & 0bn.odd
c_10 double %10.0g weight==4224 & 1.odd
c_11 double %10.0g weight==4840 & 0bn.odd
c_12 double %10.0g weight==4840 & 1.odd

We see that prodvars acts similarly to the # operator in factor varlists in Stata Ver-
sions 11 and above, or to the * operator used in xi: varlists. Note that we have used the
option lseparator(" & ") to generate semi–informative variable labels for the output
variables from the variable labels for the input variables, in a manner similar to xi:.

We can now enter the variables b * and c * into an equal–variance regression model,
this time with the noconst option, because the 2 intercept terms b * for even–numbered
and odd–numbered cars provide the intercept parameters:

. regress mpg b_* c_*, noconst nohead
note: c_1 omitted because of collinearity
note: c_2 omitted because of collinearity

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

b_1 28.16762 2.45977 11.45 0.000 23.25061 33.08464
b_2 32.52757 2.930847 11.10 0.000 26.66888 38.38625
c_1 0 (omitted)
c_2 0 (omitted)
c_3 -3.003417 2.99441 -1.00 0.320 -8.989156 2.982323
c_4 -7.31852 3.681023 -1.99 0.051 -14.67678 .0397399
c_5 -6.786187 2.593622 -2.62 0.011 -11.97076 -1.60161
c_6 -13.3264 2.794913 -4.77 0.000 -18.91335 -7.739447
c_7 -11.25077 2.805387 -4.01 0.000 -16.85866 -5.642884
c_8 -14.66254 3.240914 -4.52 0.000 -21.14103 -8.184041
c_9 -15.833 4.438494 -3.57 0.001 -24.70542 -6.960573
c_10 -16.29373 3.214685 -5.07 0.000 -22.71979 -9.867662
c_11 -16.1599 4.192831 -3.85 0.000 -24.54125 -7.778546
c_12 -21.5878 6.441925 -3.35 0.001 -34.46502 -8.710573

Note that the parameters c 1 and c 2 are the omitted zero effects on mpg of the baseline
weight of 1760 pounds, whereas the other c * parameters are the negative effects on
mpg of higher weights, for even–numbered and odd–numbered cars, listed primarily by
ascending weight, and secondarily by ascending oddness within each weight. Note, also,
that we could have had ibn.odd instead of b * in the regress command, producing
the same estimates for the same parameters.
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