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Abstract. Somers’ D is an asymmetric measure of association between two vari-
ables, which plays a central role as a parameter behind rank or “non–parametric”
statistical methods. Given a predictor variable X and an outcome variable Y , we
may estimate DY X as a measure of the effect of X on Y , or we may estimate
DXY as a performance indicator of X as a predictor of Y . The somersd pack-
age allows the estimation of Somers’ D and Kendall’s τa with confidence limits as
well as P -values. The Stata 9 version of somersd can estimate extended versions
of Somers’ D not previously available, including the Gini index, the parameter
tested by the sign test, and extensions to left– or right–censored data. It can also
estimate stratified versions of Somers’ D, restricted to pairs in the same stratum.
Therefore, it is possible to define strata by grouping values of a confounder, or
of a propensity score based on multiple confounders, and to estimate versions of
Somers’ D which measure the association between the outcome and the predic-
tor, adjusted for the confounders. The Stata 9 version of somersd uses the Mata
language for improved computational efficiency with large datasets.

Keywords: st0001, Somers’ D, Kendall’s tau, Harrell’s c, ROC area, Gini index,
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1 Introduction

Many authors have argued that so-called “nonparametric” methods are in fact based
on population parameters, and that these parameters should be estimated, with sample
statistics and confidence limits, instead of following the traditional practice of calcu-
lating only P -values for the sample statistic. Examples include Kendall and Gibbons
(1990), Wolfe and Hogg (1971), and Kerridge (1975). In a more recent paper paper
(Newson (2002)), the package somersd, introduced in Newson (2000a), was demon-
strated as a way of estimating these parameters in Stata. Its name is derived from
the parameter Somers’ D, which plays a central role. Somers’ D is defined in terms of
Kendall’s τa, is in turn used in defining the Hodges–Lehmann median difference and
the Theil median slope, and has many applications and extensions of its own. Not all
of these extensions were implemented in the then–current version of somersd, which at
the time was written in Stata Version 6.

The release of Version 9 of Stata in 2005 included the C-like compilable matrix
programming language Mata, which made possible a major upgrade of the somersd
package, with improvements in computational efficiency that were sometimes spectacu-
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lar. These improvements made it practical to extend the definitions of Somers’ D (and
Kendall’s τa) to include the cases of left– and right–censored data, and of within–strata
and within–cluster versions of the parameters. Therefore, somersd can now estimate
the parameters behind the sign test (see [R] signrank) and the Gehan–Breslow test for
censored outcomes (Gehan (1965), Breslow (1970)), Harrell’s c index for censored out-
comes (Harrell et al. (1982), Harrell et al. (1996)), and the Gini index (Cowell (1995),
Jenkins (1999)), all of which are special cases and/or transformations of Somers’ D. In
addition to these extensions, we can now estimate parameters measuring the associa-
tion between an outcome variable Y and an exposure variable X , adjusted for one or
more confounders, by defining strata using these confounders and stratifying by these
strata. The inability to adjust an association for confounders is traditionally viewed as
a major weakness of rank methods, in addition to their perceived inability to generate
confidence intervals. Both of these weaknesses are often quoted as reasons for not using
rank methods, in spite of their strengths of robustness to outliers and to modelling and
distributional assumptions (Kirkwood and Sterne (2003)).

In this article, we first redefine Kendall’s τa and Somers’ D in Section 2, and then
describe the current version of the program somersd in Section 3. In Section 4, we
present in detail, for reference purposes, the methods and formulas that somersd now
uses. In Section 5, we demonstrate a range of examples and applications.

2 What is Somers’ D?

Somers’ D is defined in terms of Kendall’s τa (Kendall and Gibbons (1990)), whose
population value is traditionally defined as

τXY = E [sign(X1 −X2) sign(Y1 − Y2)] (1)

where (X1, Y1) and (X2, Y2) are bivariate random variables sampled independently from
the same population, and E[·] denotes expectation. This definition can be generalized
to possibly left– or right–censored and/or stratified and/or clustered and/or weighted
data as follows. Suppose that 4–variate observations (Xi, Ri, Yi, Si) are sampled from
an arbitrary population, using an arbitrary sampling scheme. The Ri are censorship
indicators for the corresponding Xi, and the Si are censorship indicators for the cor-
responding Yi. These censorship indicators are negative in the case of left–censorship
(where the “true” value of the indicated variable is known to be equal to or less than
its recorded value), positive in the case of right–censorship (in which the “true” value
of the indicated variable is known to be equal to or greater than its recorded value),
and zero in the case of non–censorship (in which the “true” value is known to be equal
to the recorded value). We define a “censored sign difference” for two values u and v,
with respective censorship indicators p and q, as

csign(u, p, v, q) =

⎧⎨
⎩

1, if u > v and p ≥ 0 ≥ q
−1, if u < v and p ≤ 0 ≤ q
0, otherwise

(2)
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Given two observations (Xi, Ri, Yi, Si) and (Xj , Rj , Yj , Sj), we will call the product of
csign(Xi, Ri, Xj, Rj) and csign(Yi, Si, Yj , Sj) the concordance–discordance difference for
the two observations, and say that the two observations are concordant if this product is
1, discordant if the product is −1, and neither concordant nor discordant if the product
is 0. We can now redefine Kendall’s τa as

τXY = E [csign(Xi, Ri, Xj, Rj) csign(Yi, Si, Yj , Sj)] (3)

or (in words) as the mean concordance–discordance difference. This expectation can be
defined using weights specific to the observations and/or restrictions to subsets of pairs
of observations, defined in terms of the sampling scheme.

The population value of Somers’ D (Somers (1962)) is defined as

DY X =
τXY

τXX
(4)

Therefore, τXY is the difference between two probabilities, namely the probability that
the larger of the two X–values is associated with the larger of the two Y –values and
the probability that the larger X–value is associated with the smaller Y –value. DY X is
the difference between the two corresponding conditional probabilities, given that the
two X–values are known to be unequal. Somers’ D is related to Harrell’s c index (see
Harrell et al. (1982) and Harrell et al. (1996)) by D = 2c− 1.

2.1 Interpretations of Somers’ D

Somers’ D usually measures an association between a predictor variable X and an
outcome variable Y . Applications of Somers’ D fall into two classes:

• We may use DY X as an “effect size”, measuring the effect of X on Y .

• Alternatively, we may use DXY as a “predictor performance indicator”, measuring
the performance of X as a predictor of Y .

Examples of the first class usually involve a binary X–variable, indicating that an
individual is a member of Group A instead of Group B. They are usually motivated by
the possibility that we can intervene to change the group membership of an individual,
and thereby possibly to change the outcome. Somers’ D can then be interpreted, rightly
or wrongly, as the difference between two probabilities, namely the probability that we
will increase the outcome of a Group A individual by transferring it to Group B and
the probability that we will increase the outcome of a Group B individual by transfer-
ring it to Group A. This interpretation will arguably be more credible if Somers’ D
is restricted to comparisons within strata of individuals that are similar to others in
the same stratum. Typical examples of the first class include the use of the Gehan–
Breslow–Wilcoxon test (Gehan (1965), Breslow (1970)) to survival outcome data from
a randomized clinical trial, or the estimation of a difference in two proportions of suc-
cessful binary outcomes (which is a trivial case of Somers’ D) from binary outcome data
from a randomized clinical trial.
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Examples of the second class may involve censored or uncensored Y –variables, al-
though the X–variables are uncensored. They are usually motivated by the aim of
comparing the performance of a predictor X with the performance of another predictor
W by comparing DXY with DWY . Typical examples are discussed in Harrell et al.
(1982) and Harrell et al. (1996), which use the c–transformation of Somers’ D. An im-
portant special case of Harrell’s c is the area under the receiver–operator characteristic
(ROC) curve for binary Y –variables (see [R] roc, Hanley and McNeil (1982) or Newson
(2002)).

The predictor performance indicator DXY has the desirable property that a larger
DXY cannot be “secondary” to a smaller DWY . To understand this point, assume that
observations (Wi, Xi, Yi, Si) are sampled by some sampling scheme from some popula-
tion, and that the Si are censorship indicators for the corresponding outcome variables
Yi. Define the conditional expectation

Z(wi, xi, wj , xj) = E [ csign(Yj , Sj, Yi, Si) |Wi = wi, Xi = xi,Wj = wj , Xj = xj ] (5)

for any wi and wj in the range of W–values and any xi and xj in the range of X–
values. If we state that a positive relationship between Xi and Yi is caused entirely by a
monotonic positive relationship between both variables and Wi, then that is equivalent
to stating that

Z(wi, xi, wj , xj) ≥ 0 whenever wi ≤ wj and xj ≤ xi. (6)

However, if (6) holds, then τWY − τXY is non–negative, and therefore so is DWY −
DXY . This follows by an argument similar to Equations (7) and (8) of Newson (2002),
which can be generalized trivially to sampling and/or weighting schemes involving non-
independence and/or stratification, as long as the weights are non-negative. The denom-
inator τY Y , common to DWY and DXY , is simply the proportion of pairs of Y -values
whose csign, defined by (2), is not set to zero by censored and/or tied Y –values. There-
fore, DXY is arguably a better predictor performance indicator than τXY , because DXY

is expressed on a scale from −1 for the best possible negative predictor of Y to +1 for the
best possible positive predictor of Y , given the level of discreteness and/or censorship
existing between the Y –values in that particular population.

3 The program somersd

3.1 Syntax

somersd
[
varlist

][
if

][
in

][
weight

][
, taua tdist transf(transformation name)

cenind(cenind list) cluster(varname) cfweight(expression)

funtype(functional type)

wstrata(varlist) bstrata(varlist | n) notree level(#)

cimatrix(new matrix)
]
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where transformation name is one of

iden | z | asin | rho | zrho | c

and functional type is one of

wcluster | bcluster | vonmises

and cenind list is a list of variable names and/or zeros.

fweights, iweights and pweights are allowed; see help for weight. They are treated
as described in Interpretation of weights and Methods and formulas below.

bootstrap, by, jackknife, statsby, and svy jackknife are allowed; see help for
prefix.

3.2 Description

somersd calculates the rank order statistics Somers’D and Kendall’s τa, with confidence
limits. Somers’ D or τa is calculated for the first variable of varlist as a predictor of each
of the other variables in varlist , with estimates and jackknife variances and confidence
intervals output and saved in e() as if for the parameters of a model fit. It is possible to
use lincom to output confidence limits for differences between the population Somers’D
or Kendall’s τa values.

3.3 Options

taua causes somersd to calculate Kendall’s τa. If taua is absent, then somersd calcu-
lates Somers’ D.

tdist specifies that the estimates are assumed to have a t–distribution with N − 1
degrees of freedom, where N is the number of clusters if cluster() is specified, or
the number of observations if cluster() is not specified.

transf(transformation name) specifies that the estimates are to be transformed, defin-
ing estimates for the transformed population value. iden (identity or untrans-
formed) is the default. z specifies Fisher’s z (the hyperbolic arctangent), asin
specifies Daniels’ arcsine, rho specifies Greiner’s ρ (Pearson correlation estimated
using Greiner’s relation), zrho specifies the z–transform of Greiner’s ρ, and c spec-
ifies Harrell’s c. If the first variable of varlist is a binary indicator of a disease and
the other variables are quantitative predictors for that disease, then Harrell’s c is the
area under the receiver operating characteristic (ROC) curve. somersd recognises
the transformation names arctanh and atanh as synonyms for z, arcsin and arsin
as synonyms for asin, sinph as a synonym for rho, zsinph as a synonym for zrho,
and roc and auroc as synonyms for c. It also recognizes unambiguous abbreviations
for transformation names, such as id for iden, or aur for auroc.

cenind(cenind list) specifies a list of left– or right–censorship indicators, corresponding
to the variables mentioned in the varlist . Each censorship indicator is either a
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variable name or a zero. If the censorship indicator corresponding to a variable
is the name of a second variable, then this second variable is used to indicate the
censorship status of the first variable, which is assumed to be left–censored (at or
below its stated value) in observations in which the second variable is negative, right–
censored (at or above its stated value) in observations in which the second variable
is positive, and uncensored (equal to its stated value) in observations in which the
second variable is zero. If the censorship indicator corresponding to a variable is a
zero, then the variable is assumed to be uncensored. If cenind() is unspecified, then
all variables in the varlist are assumed to be uncensored. If the list of censorship
indicators specified by cenind() is shorter than the list of variables specified in the
varlist , then the list of censorship indicators is completed with the required number
of zeros on the right.

cluster(varname) specifies the variable which defines sampling clusters. If cluster()
is defined, then the variances and confidence limits are calculated assuming that
the data represent a sample of clusters from a population of clusters, rather than a
sample of observations from a population of observations.

cfweight(expression) specifies an expression giving the cluster frequency weights. These
cluster frequency weights must have the same value for all observations in a cluster.
If cfweight() and cluster() are both specified, then each cluster in the dataset is
assumed to represent a number of identical clusters equal to the cluster frequency
weight for that cluster. If cfweight() is specified and cluster() is unspecified,
then each observation in the dataset is treated as a cluster, and assumed to repre-
sent a number of identical one–observation clusters equal to the cluster frequency
weight. For more details on the interpretation of weights, see Interpretation of
weights below.

funtype(functional type) specifies whether the Somers’ D or Kendall’s τa function-
als estimated are ratios of between–cluster, within–cluster or von Mises function-
als. These three functional types are specified by the options funtype(bcluster),
funtype(wcluster) or funtype(vonmises), respectively. If funtype() is not spec-
ified, then funtype(bcluster) is assumed, and between–cluster functionals are es-
timated. The within–cluster Somers’ D is a generalization of the confidence interval
corresponding to the sign test (see [R] signrank). The Gini coefficient is a special
case of the clustered von Mises Somers’ D. For further details, see Methods and
formulas.

wstrata(varlist) specifies a list of variables whose value combinations are the W–
strata. If wstrata() is specified, then somersd estimates stratified Somers’ D or
Kendall’s τa parameters, applying only to pairs of observations within the same W–
stratum. These parameters can be used to measure associations within strata, such
as associations between an outcome and an exposure within groups defined by values
of a confounder, or by values of a propensity score based on multiple confounders.

bstrata(varlist | n) specifies the B–strata. If bstrata() is specified, then somersd
estimates Somers’ D or Kendall’s τa parameters specific to pairs of observations
from different B–strata. These B–strata are either combinations of values of a list
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of variables (if varlist is specified) or the individual observations (if n is specified).
B–strata will not often be required. However, if we are estimating the within–cluster
Kendall’s τa (using the options taua funtype(wcluster)), then the additional op-
tion bstrata( n) will ensure that the within–cluster Kendall’s τa can take the whole
range of values from −1 (in the case of complete discordance within clusters) to +1
(in the case of complete concordance within clusters).

notree specifies that somersd does not use the default search tree algorithm based on
Newson (2006), but instead uses a trivial algorithm, which compares every pair of
observations and requires much more time with large datasets. This option is rarely
used except to compare performance.

level(#) specifies the confidence level, in percent, for confidence intervals of the esti-
mates; see [R] level.

cimatrix(new matrix) specifies an output matrix to be created, containing estimates
and confidence limits for the untransformed Somers’ D, Kendall’s τa or Greiner’s ρ
parameters. If transf() is specified, then the confidence limits will be asymmetric
and based on symmetric confidence limits for the transformed parameters. This
option (like level()) may be used in replay mode as well as in non–replay mode.

If a varlist is supplied, then all options are allowed. If not, then somersd replays the
previous somersd estimation (if available), and the only options allowed are level()
and cimatrix().

3.4 Interpretation of weights

somersd inputs up to two weight expressions, which are the ordinary Stata weights
given by the weight and the cluster frequency weights given by the cfweight() option.
Internally, somersd defines and uses three distinct sets of weights, which are the cluster
frequency weights, the observation frequency weights, and the importance weights.

The cluster frequency weights must be the same for different observations in a cluster,
and imply that each cluster in the input dataset represents a number of identical clusters
equal to the cluster frequency weight in that cluster. If cluster() is not specified, then
the individual observations are clusters, and the cluster frequency weight implies that
each one–observation cluster represents a number of identical one–observation clusters
equal to the cluster frequency weight. The cluster frequency weights are given by
cfweight() if that option is specified, are set to one if cfweight() is unspecified and
cluster() is specified, are equal to the ordinary Stata weights if neither cluster() nor
cfweight() is specified and the ordinary Stata weights are fweights, and are equal to
one otherwise.

The observation frequency weights are summed over all observations in the input
dataset to produce the number of observations reported by somersd and returned in the
estimation result e(N), and are not used in any other way. They are set by cfweight()
if that option is specified and the ordinary Stata weights are not fweights, are equal to
the ordinary Stata weights if cfweight() is unspecified and the ordinary Stata weights
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are fweights, are equal to the product of the cfweight() expression and the ordinary
Stata weights if cfweight() is specified and the ordinary Stata weights are fweights,
and are equal to 1 otherwise.

The importance weights are used as described in Methods and Formulas below.
They are equal to the ordinary Stata weights if these are specified and either cluster()
or cfweight() is specified, are equal to the ordinary Stata weights if neither of these
two options is specified and the ordinary Stata weights are specified as pweights or
iweights, and are equal to 1 otherwise.

3.5 Saved results

somersd saves the following results in e():

Scalars
e(N) number of observations e(df r) residual degrees of freedom
e(N clust) number of clusters

Macros
e(cmd) somersd e(param) parameter (somersd or taua)
e(parmlab) parameter label in output e(tdist) tdist if specified
e(depvar) name of X–variable e(clustvar) name of cluster variable
e(vcetype) title used to label std. error e(wtype) weight type
e(wexp) weight expression e(cfweight) cfweight() expression
e(funtype) funtype() option e(wstrata) wstrata() option
e(bstrata) bstrata() option e(predict) program called by predict
e(transf) transf() option e(tranlab) transformation label in output
e(properties)"b V"

Matrices
e(b) coefficient vector e(V) variance–covariance matrix

Functions
e(sample) marks estimation sample

Note that (confusingly) e(depvar) is the X–variable, or predictor variable, in the
conventional terminology for defining Somers’ D. somersd is also different from most
estimation commands in that its results are not designed to be used by predict.

4 Methods and formulas

This section is intended mainly as a reference for the extensive family of methods and
formulas used by the somersd program. Less mathematically–minded readers may skip
or skim through this section and progress to the Examples.

Somers’ D and Kendall’s τa, in their various forms, can be expressed as ratios of
sample means, Hoeffding U–statistics or von Mises V –statistics, depending on the func-
tional type specified by the funtype() option. somersdworks by jackknifing the original
means, U–statistics and V –statistics (Arvesen (1969)), and by using Taylor polynomials
to derive variances for the ratios. Normalizing and/or variance–stabilizing transforma-
tions may then be applied.
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We assume the general case where the observations are clustered, which becomes
the familiar unclustered case when there is one observation per cluster, and that there
are N clusters in the sample, sampled from a common population. We assume that
there are one or more indexed W–strata (defaulting to one all–inclusive W–stratum
if wstrata() is not specified). Two slightly different versions of the notation will be
used, depending on whether or not the user has specified B–strata using the bstrata()
option.

If there are no B–strata, then we define wfgi, Xfgi, Yfgi, Rfgi and Sfgi to be
the importance weight, X–value, Y –value, X–censorship indicator and Y –censorship
indicator, respectively, for the ith observation belonging to the gth W–stratum in the
fth cluster. Not every possible index combination fgi will correspond to an observation,
so all summation over index combinations will be over index combinations corresponding
to an observation. For index combinations fgi and jkm corresponding to observations,
we can define

vfgi,jkm = wfgiwjkm,

t
(XY )
fgi,jkm = vfgi,jkm csign(Xfgi, Rfgi, Xjkm, Rjkm) csign(Yfgi, Sfgi, Yjkm, Sjkm)

(7)
We will use the plus–substitution notation to define (for instance)

vfgi,jk+ =
∑

m vfgi,jkm, t
(XY )
fgi,jk+ =

∑
m t

(XY )
fgi,jkm,

vfgi,j++ =
∑

k vfgi,jk+, t
(XY )
fgi,j++ =

∑
k t

(XY )
fgi,jk+

(8)

and any other sums over any other indices. For clusters f and j, we define

φ
(V )
fj =

∑
g

vfg+,jg+, φ
(XY )
fj =

∑
g

t
(XY )
fg+,jg+ (9)

In other words, φ(V )
fj is the sum of pairwise importance weights, and φ(XY )

fj is the sum of
pairwise importance–weighted concordance–discordance differences, belonging to pairs
of observations, in the same W–stratum, of which the first observation is in cluster f
and the second observation is in cluster j. The quantities φ(V )

fj and φ(XY )
fj are known as

kernels in the terminology of Chapter 5 of Serfling (1980), and are defined for any pair
of clusters.

If the user has defined B–strata, then we define the kernels φ(V )
fj and φ

(XY )
fj by

a slightly different formula. We define wfghi, Xfghi, Yfghi, Rfghi and Sfghi to be
the importance weight, X–value, Y –value, X–censorship indicator and Y –censorship
indicator, respectively, for the ith observation belonging to cluster f , W–stratum g and
B–stratum h. For index combinations fghi and jklm corresponding to observations,
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we define

vfghi,jklm

= wfghiwjklm ,

t
(XY )
fghi,jklm

= vfghi,jklm csign(Xfghi, Rfghi, Xjklm, Rjklm) csign(Yfghi, Sfghi, Yjklm, Sjklm)
(10)

and for clusters f and j we define

φ
(V )
fj =

∑
g

vfg++,jg++−
∑

g

∑
h

vfgh+,jgh+, φ
(XY )
fj =

∑
g

t
(XY )
fg++,jg++−

∑
g

∑
h

t
(XY )
fgh+,jgh+

(11)
This time, φ(V )

fj is the sum of products of importance weights, and φ(XY )
fj is the sum of

importance–weighted concordance–discordance differences, belonging to pairs of obser-
vations, in the same W–stratum and different B–strata, of which the first observation
is in cluster f and the second observation is in cluster j. Note that, if the user has
specified bstrata( n), then every observation is in its own B–stratum, and the second
terms in the φ(V )

fj and φ(XY )
fj of (11) will then contain only pairs in which an observation

is paired with itself.

The kernels φ(V )
fj and φ

(XY )
fj of (9) or (11) can be “averaged” over their indices to

produce parameters denoted as V and TXY , respectively. Kendall’s τa and Somers’ D
are defined as ratios of these “averages” by

τXY = TXY /V, DY X = TXY /TXX = τXY /τXX (12)

The way in which the kernels are averaged depends on the funtype() option. If the
user specifies funtype(wcluster), then V and TXY are “within–cluster averages”. If
the user specifies funtype(bcluster) (the default), then V and TXY are “between–
cluster averages”. If the user specifies funtype(vonmises), then V and TXY are “overall
averages”. In all cases, we estimate the population parameters V and TXY using sample
statistics V̂ and T̂XY as point estimates, and estimate the sampling variances of these
point estimates using a jackknife method, with pseudovalues denoted ψ

(V )
j and ψ

(XY )
j

for the jth cluster.

If the user specifies funtype(wcluster), then somersd estimates the parameters

V = E
[
φ

(V )
jj

]
, TXY = E

[
φ

(XY )
jj

]
(13)

These functionals are population means of within–cluster kernels, and their point esti-
mates are the corresponding sample means

V̂ = N−1
N∑

j=1

φ
(V )
jj , T̂XY = N−1

N∑
j=1

φ
(XY )
jj (14)
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and the jackknife pseudovalues for the jth cluster are given by

ψ
(V )
j = φ

(V )
jj , ψ

(XY )
j = φ

(XY )
jj (15)

If the user has specified funtype(bcluster) (the default) or funtype(vonmises),
then somersd estimates the parameters

V = E
[
φ

(V )
fj

]
, TXY = E

[
φ

(XY )
fj

]
(16)

for f �= j. These parameters are known as Hoeffding functionals (Hoeffding (1948))
if clusters f and j are assumed to be sampled without replacement, and as von Mises
functionals (von Mises (1947)) if clusters f and j are assumed to be sampled with
replacement. If the population from which the clusters are sampled is infinite, then
the population Hoeffding functional is equal to the corresponding population von Mises
functional.

If the user specifies funtype(bcluster), or does not specify a funtype() option,
then the point estimates of the population Hoeffding functionals are the corresponding
sample Hoeffding functionals, or U–statistics in the terminology of Hoeffding (1948),
Serfling (1980), Serfling (1988) and Lee (1990). They are defined as V̂ = T̂XY = 0 if
N = 1, and otherwise as

V̂ =
φ

(V )
++ − ∑N

j=1 φ
(V )
jj

N(N − 1)
, T̂XY =

φ
(XY )
++ − ∑N

j=1 φ
(XY )
jj

N(N − 1)
(17)

The jackknife pseudovalues for the jth cluster are given by ψ(V )
j = ψ

(XY )
j = 0 if N = 1,

by
ψ

(V )
j = φ

(V )
j+ − φ

(V )
jj , ψ

(XY )
j = φ

(XY )
j+ − φ

(XY )
jj (18)

if N = 2, and otherwise as

ψ
(V )
j = (N − 1)−1

(
φ

(V )
++ − ∑N

k=1 φ
(V )
kk

)

− (N − 2)−1
[
φ

(V )
++ − ∑N

k=1 φ
(V )
kk − 2

(
φ

(V )
j+ − φ

(V )
jj

)]
,

ψ
(XY )
j = (N − 1)−1

(
φ

(XY )
++ − ∑N

k=1 φ
(XY )
kk

)

− (N − 2)−1
[
φ

(XY )
++ − ∑N

k=1 φ
(XY )
kk − 2

(
φ

(XY )
j+ − φ

(XY )
jj

)]

(19)

If the user specifies funtype(vonmises), then the point estimates of the popu-
lation von Mises functionals are the corresponding sample von Mises functionals, or
V –statistics in the terminology of Riedwyl (1988) and of Chapter 5 of Serfling (1980).
They are defined as

V̂ = N−2φ
(V )
++ , T̂XY = N−2φ

(XY )
++ (20)
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and the jackknife pseudovalues for the jth cluster are given by

ψ
(V )
j = φ

(V )
jj , ψ

(XY )
j = φ

(XY )
jj (21)

if N = 1, and otherwise by

ψ
(V )
j = N−1φ

(V )
++ − (N − 1)−1

(
φ

(V )
++ − 2φ(V )

j+ + φ
(V )
jj

)
,

ψ
(XY )
j = N−1φ

(XY )
++ − (N − 1)−1

(
φ

(XY )
++ − 2φ(XY )

j+ + φ
(XY )
jj

) (22)

Note that the estimates and jackknife pseudovalues of formulas (14) to (22) can
all be expressed in terms of the φ(V )

jj , φ(V )
j+ , φ(XY )

jj and φ
(XY )
j+ . Newson (2006) devised

an algorithm to calculate these quantities, using binary search trees, which requires
an amount of computation time of order Nobs logNobs, where Nobs is the number of
observations. A version of this algorithm is used by somersd, unless the user specifies
the notree option, in which case somersd uses a trivial algorithm, which compares all
pairs of observations and requires an amount of time quadratic in Nobs. The difference
in performance can be spectacular in large datasets (Nobs > 1000).

The parameters we really want to estimate are Kendall’s τa and/or Somers’ D,
defined by (12). These formulas are equivalent to the familiar formulas (3) and (4). To
estimate them, we use the jackknife method on V and TXY , and use appropriate Taylor
polynomials. somersd calculates correlation measures for a single variable X with a
set of Y –variates (Y (1), . . . , Y (p)). (The X–variate may have a censorship indicator R,
and the Y –variates may have censorship indicators (S(1), . . . , S(p)).) It calculates, in
the first instance, the covariance matrix for V̂ , T̂XX , and T̂XY (i) for 1 ≤ i ≤ p. This is
done using the jackknife influence matrix Υ, which has N rows labelled by the cluster
subscripts, and p+ 2 columns labelled (in Stata fashion) by the names V , X , and Y (i)

for 1 ≤ i ≤ p. It is defined by

Υ [j, V ] = ψ
(V )
j − ψ̄(V ), Υ [j,X ] = ψ

(XX)
j − ψ̄(XX), Υ

[
j, Y (i)

]
= ψ

(XY (i))
j − ψ̄(XY (i))

(23)
where the quantities

ψ̄(V ) = N−1
N∑

k=1

ψ
(V )
k , ψ̄(XX) = N−1

N∑
k=1

ψ
(XX)
k , ψ̄(XY (i)) = N−1

N∑
k=1

ψ
(XY (i))
k (24)

are the mean pseudovalues. (These mean pseudovalues are equal to the corresponding
point estimates unless funtype(vonmises) is specified, in which case the mean pseu-
dovalue is equal to the corresponding Hoeffding U–statistic.) The jackknife covariance
matrix is equal to

Ĉ = [N(N − 1)]−1 Υ′Υ (25)

The estimates for Kendall’s τa and Somers’ D, for variables Y and X , are defined by

τ̂XY = T̂XY /V̂ , D̂Y X = T̂XY /T̂XX (26)
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unless the denominators of these expressions are zero, in which case the numerators must
also be zero, and somersd therefore sets the estimates and their covariances to zero. If
the denominator is nonzero, then the covariance matrix is defined using Taylor polyno-
mials. In the case of Somers’ D, we define the p×(p+2) matrix of estimated derivatives
Γ̂(D), whose rows are labelled by the names Y (1), . . . , Y (p), and whose columns are la-
belled by V,X, Y (1), . . . , Y (p). This matrix is defined by

Γ̂(D)
[
Y (i), X

]
= ∂D̂Y (i)X/∂T̂XX = −T̂XY (i)/T̂ 2

XX ,

Γ̂(D)
[
Y (i), Y (i)

]
= ∂D̂Y (i)X/∂T̂XY (i) = 1/T̂XX

(27)

all other entries being 0. In the case of Kendall’s τa, we define a (p+1)× (p+2) matrix
of estimated derivatives Γ̂(τ), whose rows are labelled by X,Y (1), . . . , Y (p), and whose
columns are labelled by V,X, Y (1), . . . , Y (p). This matrix is defined by

Γ̂(τ) [X,V ] = ∂τ̂XX/∂V̂ = −T̂XX/V̂
2,

Γ̂(τ) [X,X ] = ∂τ̂XX/∂T̂XX = 1/V̂ ,

Γ̂(τ)
[
Y (i), V

]
= ∂τ̂XY (i)/∂V̂ = −T̂XY (i)/V̂ 2,

Γ̂(τ)
[
Y (i), Y (i)

]
= ∂τ̂XY (i)/∂T̂XY (i) = 1/V̂

(28)

all other entries again being 0. The estimated dispersion matrices of the Somers’ D and
τa estimates are therefore Ĉ(D) and Ĉ(τ), respectively, defined by

Ĉ(D) = Γ̂(D) Ĉ Γ̂(D) ′, Ĉ(τ) = Γ̂(τ) Ĉ Γ̂(τ) ′ (29)

4.1 Transformations

The transf() option offers a choice of transformations. Since these are available both
for Somers’ D and for Kendall’s τa, we will denote the original estimate as θ (which can
stand for D or τ) and the transformed estimate as ζ. They are summarized in Table 1,
together with their derivatives dζ/dθ.

(Note that all of these expressions are defined for θ = 0, but some are undefined for
θ = 1 or θ = −1, and, in those cases, somersd enters a substitute θ–argument very close
to 1 or −1.) If transf() is specified, then somersd displays and saves the transformed
estimates and their estimated covariance, instead of the untransformed versions. If Ĉ(θ)

is the covariance matrix for the untransformed estimates given by (29), and Γ̂(ζ) is the
diagonal matrix whose diagonal entries are the dζ/dθ estimates specified in the table,
then the transformed parameter and its covariance matrix are

ζ̂ = ζ(θ̂), Ĉ(ζ) = Γ̂(ζ) Ĉ(θ) Γ̂(ζ) ′. (30)

Fisher’s z–transform was originally recommended for the Pearson correlation coefficient
by Fisher (1921) (see also Gayen (1951)), but Edwardes (1995) recommended it specifi-
cally for Somers’ D on the basis of simulation studies. Daniels’ arcsine was suggested as
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Table 1: Transformations provided by the transf() option of somersd.
transf() Transform name ζ(θ) dζ/dθ
iden Untransformed θ 1
z Fisher’s z arctanh θ =

(
1 − θ2

)−1

1
2 log[(1 + θ)/(1 − θ)]

asin Daniels’ arcsine arcsin θ
(
1 − θ2

)−1/2

rho Greiner’s ρ sin(π
2 θ)

π
2 cos(π

2 θ)
zrho Greiner’s ρ arctanh sin(π

2 θ)
π
2 cos(π

2 θ)[1 − sin(π
2 θ)

2]−1

(z-transformed)
c Harrell’s c (θ + 1)/2 1/2

a normalizing transform in Daniels and Kendall (1947). If transf(z) or transf(asin)
is specified, then somersd prints asymmetric confidence intervals for the untransformed
D or τa parameters, calculated from symmetric confidence intervals for the transformed
parameters using the inverse function θ(ζ). (This feature corresponds to the eform
option of other estimation commands.) Greiner’s ρ (Kendall and Gibbons (1990)) is de-
signed to estimate the Pearson correlation coefficient corresponding to the measured τa.
If transf(zrho) is specified, then somersd prints asymmetric confidence intervals for
the untransformed Greiner’s ρ, using the inverse z–transform on symmetric confidence
intervals for the z–transformed Greiner’s ρ. Harrell’s c is usually a reparameterization
of Somers’ D, and is recommended in Harrell et al. (1982) and Harrell et al. (1996) as
a general measure of the predictive power of a prognostic score arising from a medical
test.

5 Examples

These examples overlap with those in the manual somersd.pdf, distributed with the
somersd package as an ancillary file. This selection concentrates on extensions to
Somers’ D not previously available.

5.1 Extensions to paired data

In [R] signrank, the paired Wilcoxon and sign tests are demonstrated on a dataset with
one observation for each of 12 cars, and variables mpg1 and mpg2, representing miles per
gallon for the car when tested with untreated and treated fuel, respectively. Here, we
use somersd on the same data to produce confidence intervals corresponding to the two
rank tests for paired data, both of which test hypotheses about versions of Somers’ D.

In the case of the paired Wilcoxon test carried out by signrank, the underlying
parameter is DY X , where Y is the absolute difference between miles per gallon observed
under the two fuel treatments and X is the sign of the difference. We are therefore
testing whether positive differences between mpg1 and mpg2 tend to have higher values
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than negative differences. We first do this with signrank, which only produces a P–
value, and then do this with somersd, which gives a confidence interval:

. use http://www.stata-press.com/data/r9/fuel, clear

. signrank mpg2=mpg1

Wilcoxon signed-rank test

sign obs sum ranks expected

positive 8 63.5 38.5
negative 3 13.5 38.5

zero 1 1 1

all 12 78 78

unadjusted variance 162.50
adjustment for ties -1.63
adjustment for zeros -0.25

adjusted variance 160.63

Ho: mpg2 = mpg1
z = 1.973

Prob > |z| = 0.0485

. gen signdiff=sign(mpg2-mpg1)

. gen absdiff=abs(mpg2-mpg1)

. somersd signdiff absdiff if absdiff!=0, transf(z)
Somers’ D with variable: signdiff
Transformation: Fisher’s z
Valid observations: 11

Symmetric 95% CI for transformed Somers’ D

Jackknife
signdiff Coef. Std. Err. z P>|z| [95% Conf. Interval]

absdiff .7331685 .4568681 1.60 0.109 -.1622765 1.628614

Asymmetric 95% CI for untransformed Somers’ D
Somers_D Minimum Maximum

absdiff .625 -.1608669 .92586389

. drop signdiff absdiff

signrank gives a P–value of 0.0485. somersd produces a (slightly) higher P–
value, but also produces confidence intervals for the z–transformed and untransformed
Somers’ D. In our sample of 12 cars, if we choose a positive treated–untreated difference
and a negative treated–untreated difference at random, then the positive difference is
62.5% more likely to be the larger of the two than to be the smaller of the two. And,
in the population of cars from which this sample was taken, we are 95% confident that
this difference is between 16% less likely and 93% more likely.

The sign test is based on a within–cluster Somers’ D, where the clusters are cars and
the observations are performance tests (two on each car). In this case, the underlying
parameter is DY X , where Y is miles per gallon achieved by that car on that test, and
X is fuel treatment status (untreated or treated). This time, after calling signtest,
we expand the dataset with one observation per car, using reshape, to produce a
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new dataset with 1 observation per test and therefore two observations per car, and
containing variables carseq containing the car sequence number, fueltrea equal to
1 for untreated fuel and 2 for treated fuel, and mpg containing miles per gallon. We
use somersd, with the options cluster(carseq) funtype(wcluster), to produce a
confidence interval for Somers’ D:

. signtest mpg2=mpg1

Sign test

sign observed expected

positive 8 5.5
negative 3 5.5

zero 1 1

all 12 12

One-sided tests:
Ho: median of mpg2 - mpg1 = 0 vs.
Ha: median of mpg2 - mpg1 > 0

Pr(#positive >= 8) =
Binomial(n = 11, x >= 8, p = 0.5) = 0.1133

Ho: median of mpg2 - mpg1 = 0 vs.
Ha: median of mpg2 - mpg1 < 0

Pr(#negative >= 3) =
Binomial(n = 11, x >= 3, p = 0.5) = 0.9673

Two-sided test:
Ho: median of mpg2 - mpg1 = 0 vs.
Ha: median of mpg2 - mpg1 != 0

Pr(#positive >= 8 or #negative >= 8) =
min(1, 2*Binomial(n = 11, x >= 8, p = 0.5)) = 0.2266

. preserve

. gen carseq=_n

. reshape long mpg, i(carseq) j(fueltrea)
(note: j = 1 2)

Data wide -> long

Number of obs. 12 -> 24
Number of variables 3 -> 3
j variable (2 values) -> fueltrea
xij variables:

mpg1 mpg2 -> mpg

. somersd fueltrea mpg, transf(z) cluster(carseq) funtype(wcluster)
Within-cluster Somers’ D with variable: fueltrea
Transformation: Fisher’s z
Valid observations: 24
Number of clusters: 12

Symmetric 95% CI for transformed Somers’ D
(Std. Err. adjusted for 12 clusters in carseq)

Jackknife
fueltrea Coef. Std. Err. z P>|z| [95% Conf. Interval]

mpg .4436516 .3145066 1.41 0.158 -.1727701 1.060073
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Asymmetric 95% CI for untransformed Somers’ D
Somers_D Minimum Maximum

mpg .41666667 -.17107135 .78569191

. restore

This time, signtest produces a P–value of 0.2266. somersd produces a P -value
of 0.158, and confidence intervals for the z–transformed and untransformed Somers’ D.
We see that, in this sample of 12 cars with two tests each, if the same car is tested with
untreated and treated fuel, then it is 42% more likely to travel more miles per gallon
with the treated fuel than with the untreated fuel. And, in the population of cars from
which this sample was drawn, a car is between 17% less likely and 79% more likely
to travel further per gallon on the treated fuel than on the untreated fuel. Therefore,
the high P -value definitely does not indicate proof of the null hypothesis that a car is
equally likely to travel further on treated or untreated fuel.

The within–cluster Somers’ D tested by the sign test can easily be generalized to
cases where each car is tested more than one time with each type of fuel.

5.2 Extensions to survival data

In this example, we demonstrate the cenind() option with a simple set of survival data
distributed by Stata Press, with 1 observation per subject in a drug trial and data on
treatment, age and survival time. We first load the data, then tabulate the treatment
variable drug, then define the new variables youth (representing number of years to the
subject’s 100th birthday) and censind (a censorship indicator equal to 0 for subjects
who died and to 1 for subjects whose survival time is right–censored). We also use
xtile to split the sample into 3 age tertiles.

. use http://www.stata-press.com/data/r9/drugtr, clear
(Patient Survival in Drug Trial)

. tab drug, m

Drug type
(0=placebo) Freq. Percent Cum.

0 20 41.67 41.67
1 28 58.33 100.00

Total 48 100.00

. gen youth=100-age

. gen byte censind=1-died

. tab died censind, m

1 if
patient censind

died 0 1 Total

0 0 17 17
1 31 0 31

Total 31 17 48
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. xtile agegp=age, n(3)

. tab agegp, m

3 quantiles
of age Freq. Percent Cum.

1 18 37.50 37.50
2 16 33.33 70.83
3 14 29.17 100.00

Total 48 100.00

The Wilcoxon–Breslow–Gehan test is demonstrated using Stata in [ST] sts test. It
tests the hypothesis of a zero value of the Somers’ D of survival (as the Y –variable)
with respect to membership of a particular group (as the X–variable). Using somersd,
we can improve on this by defining a confidence interval for this Somers’ D parameter:

. sts test drug, wilcoxon

failure _d: died
analysis time _t: studytime

Wilcoxon (Breslow) test for equality of survivor functions

Events Events Sum of
drug observed expected ranks

0 19 7.25 385
1 12 23.75 -385

Total 31 31.00 0

chi2(1) = 22.61
Pr>chi2 = 0.0000

. somersd drug studytime, tr(z) cenind(0 censind)
Somers’ D with variable: drug
Transformation: Fisher’s z
Valid observations: 48

Symmetric 95% CI for transformed Somers’ D

Jackknife
drug Coef. Std. Err. z P>|z| [95% Conf. Interval]

studytime .8297787 .1935732 4.29 0.000 .4503821 1.209175

Asymmetric 95% CI for untransformed Somers’ D
Somers_D Minimum Maximum

studytime .68035714 .42221306 .83643191

We see (from the Wilcoxon test) that the treated group has fewer deaths, and the
placebo group has more deaths, than we would expect by chance, assuming population
survival distributions to be the same in the two groups. We also see (from the confidence
interval for the untransformed Somers’ D) that, if we sample a subject at random from
each of the two subpopulations (treated and placebo), then the event that the treated
subject survives the placebo subject is 42% to 84% more probable than the event that
the placebo subject survives the treated subject. Alternatively, we can stratify SomersD
by age tertile:
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. somersd drug studytime, tr(z) cenind(0 censind) wstrata(agegp)
Somers’ D with variable: drug
Transformation: Fisher’s z
Within strata defined by: agegp
Valid observations: 48

Symmetric 95% CI for transformed Somers’ D

Jackknife
drug Coef. Std. Err. z P>|z| [95% Conf. Interval]

studytime .9729551 .2404965 4.05 0.000 .5015905 1.44432

Asymmetric 95% CI for untransformed Somers’ D
Somers_D Minimum Maximum

studytime .75 .46336709 .89456394

We see that, if we sample a subject at random from the same age tertile in each of
the two treatment groups (treated and placebo), then it is 46% to 89% more likely that
the treated subject survives the untreated subject than vice versa.

The Gehan–Breslow–Wilcoxon Somers’ D is an example of DY X interpreted as a
treatment effect. However, we may also estimate DXY (or the corresponding Harrell’s c)
as a predictor performance indicator. For instance, we can compare treatment and youth
as predictors of survival, using somersd and lincom:

. somersd studytime drug youth, tr(c) cenind(censind)
Somers’ D with variable: studytime
Transformation: Harrell’s c
Valid observations: 48

Symmetric 95% CI for Harrell’s c

Jackknife
studytime Coef. Std. Err. z P>|z| [95% Conf. Interval]

drug .7275986 .0367931 19.78 0.000 .6554855 .7997117
youth .6415771 .0528314 12.14 0.000 .5380295 .7451246

. lincom drug-youth

( 1) drug - youth = 0

studytime Coef. Std. Err. z P>|z| [95% Conf. Interval]

(1) .0860215 .0618354 1.39 0.164 -.0351736 .2072166

We see that active drug treatment and youth are both positive survival indicators,
as they both have values of Harrell’s c greater than 0.5. However, when we use lincom
to estimate the difference between the two Harrell’s c parameters (equal to half the
difference between the corresponding Somers’D parameters), we find that the confidence
interval for the difference includes zero. Based on this difference alone, we cannot
state that the active treatment is a more or less positive predictor than being young.
However, we can use the wstrata() option to estimate pooled, stratified Harrell’s c
values for youth and treatment (based only on comparisons within age tertiles), and
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their difference:

. somersd studytime drug youth, tr(c) cenind(censind) wstrata(agegp)
Somers’ D with variable: studytime
Transformation: Harrell’s c
Within strata defined by: agegp
Valid observations: 48

Symmetric 95% CI for Harrell’s c

Jackknife
studytime Coef. Std. Err. z P>|z| [95% Conf. Interval]

drug .7630597 .0398266 19.16 0.000 .685001 .8411184
youth .5559701 .0607348 9.15 0.000 .4369321 .6750082

. lincom drug-youth

( 1) drug - youth = 0

studytime Coef. Std. Err. z P>|z| [95% Conf. Interval]

(1) .2070896 .0660029 3.14 0.002 .0777262 .3364529

This time, we see that youth is a less impressive predictor of survival within age ter-
tiles (as the confidence interval for Harrell’s c contains 0.5), and is a less good predictor
than treatment when predicting survival between subjects in the same age tertile. We
can therefore conclude (in very strong terms) that treatment has an effect that is not
entirely caused by confounding by age.

In this analysis, there is only one confounder. There are often many confounders in
observational studies in real life, and this makes stratified analyses less easy. However, a
possible solution might be to define a propensity score, measuring proneness to allocation
to a treatment and dependent on all the confounders, and to use xtile on the propensity
score to define a propensity group variable, which can be used as the wstrata() option
by somersd. The seminal paper on propensity scores is Rosenbaum and Rubin (1983),
but a good place to start a literature search now might be Imai and van Dyk (2004).

5.3 Scenario effects: the Gini coefficient

The Gini coefficient of inequality (Cowell (1995), Jenkins (1999)) is used by econometri-
cians as a measure of the inequality of a distribution of incomes, wealth or other assets
in a population, on a scale from zero (when everybody has an equal share) to one (when
one person has everything). It is traditionally understood by reference to the Lorenz
curve, which is the set of (X,Y )–points on the unit square such that the richest 100Y
percent of the population have 100X percent of the income (or wealth). The Lorenz
curve is therefore an example of a probability–probability plot, as is the ROC curve
(Hanley and McNeil (1982)). The Gini coefficient is equal to the difference between the
area above the Lorenz curve and the area below the Lorenz curve. Note that Gini also
invented several other coefficients, which are also referred to in various contexts as “the
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Gini coefficient”, and which are discussed in Goodman and Kruskal (1959).

The Gini coefficient of inequality is a special case of Somers’ D. To see this, imagine
that two lotteries are organized in a population, and that, in the first lottery, each
member of the population has one ticket, whereas, in the second lottery, each individual
buys a number of tickets proportional to that individual’s income. The first lottery is
equivalent to sampling uniformly from the Y –axis of the Lorenz plot, whereas the second
lottery is equivalent to sampling uniformly from the X–axis of the Lorenz plot. The
region above the Lorenz curve corresponds to the event that the second lottery winner
is a higher earner than the first, whereas the region below the Lorenz curve corresponds
to the event that the first lottery winner is a higher earner than the second. Therefore,
the Gini coefficient is a clustered Somers’ D, where the clusters are individuals in the
population, the observations are combinations of individual and lottery (first or second),
the Y –variate is income, the X–variate is lottery sequence (1 or 2), and the importance
weights are equal for all individuals in the first lottery and proportional to income for
all individuals in the second lottery.

We can illustrate this principle using the womenwage dataset, distributed by Stata
Press and used in [R] intreg. We preserve the data, and use the expgen package
(an extended version of expand downloadable from SSC) to replace each observation
in the original dataset (containing one observation per woman) with two observations
(one per woman per lottery). The new dataset is indexed by the variables womanid
(denoting sequence number of the woman) and lotseq (denoting sequence number of
the lottery). We create an importance variable pwt, containing probability weights
equal for all women in the first lottery and equal to a woman’s wage (to the nearest
kilodollar) in the second lottery. We then use somersd, using the normalizing and/or
variance–stabilizing z–transformation, before restoring the old dataset:

. use http://www.stata-press.com/data/r9/womenwage, clear
(Wages of women)

. preserve

. expgen =2, oldseq(womanid) copyseq(lotseq)

. lab var lotseq "Lottery sequence number"

. gen pwt = (lotseq==1) + wage*(lotseq==2)

. lab var pwt "Probability weight"

. somersd lotseq wage [pwei=pwt], cluster(womanid) funtype(vonmises) tr(z)
Von Mises Somers’ D with variable: lotseq
Transformation: Fisher’s z
Valid observations: 976
Number of clusters: 488

Symmetric 95% CI for transformed Somers’ D
(Std. Err. adjusted for 488 clusters in womanid)

Jackknife
lotseq Coef. Std. Err. z P>|z| [95% Conf. Interval]

wage .2875044 .0114695 25.07 0.000 .2650246 .3099843

Asymmetric 95% CI for untransformed Somers’ D
Somers_D Minimum Maximum
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wage .27983629 .25898919 .30042278

. restore

We see that, if the women in this dataset organized two lotteries amongst themselves,
and each woman bought one ticket in the first lottery and a number of tickets worth
a constant fraction of her wages in the second lottery, then the second lottery winner
would be 27.98% more likely than the first lottery winner to be the higher earner of the
two. And, if the same lotteries were organized in the population from which these women
were sampled, then the difference would probably be between 25.90% and 30.04%. The
option funtype(vonmises) is necessary because there is a small but nonzero probability
that, by chance, the same woman will win both lotteries, although the other women in
the sample will probably not believe this if it happens.

The Gini coefficient represents a type of treatment–effect Somers’D, which we might
call a scenario–effect Somers’D, where the treatment groups are two scenarios, imagined
to happen to the same population. Another example of a scenario–effect Somers’ D
is the population attributable risk (Gordis (2000)), defined by epidemiologists as the
difference between the risk of a disease in the population we can observe and the risk
of disease that would be observed in the same population in an alternative scenario, in
which we can eliminate an exposure, which is assumed to have a causal effect on the
risk of a disease. To estimate this using somersd, we would use funtype(vonmises),
and expand each individual in a sample into two “scenario–individuals”, corresponding
to the same individual under the two scenarios, and assign a zero importance weight to
exposed individuals under the second scenario. Sampling probability weights might be
used to standardize the two scenarios to a common distribution of a stratifying variable,
defined by age and/or a propensity score for the exposure.

6 Summary

Somers’ D is an ordinal association measure. It includes, as special cases, a large
family of parameters, which underly rank or so-called “nonparametric” methods, and
are interpretable as differences between proportions. The Stata 9 version of the somersd
package has added the options cenind(), cfweight(), funtype(), wstrata() and
bstrata(). These additions allow the user to estimate these special cases, most of
which could not be estimated by the previous Stata 6 version. These differences can be
adjusted for confounding variables, which is not usually easy using rank–based methods.
Note that we may still need to use regression methods to define a propensity score.

Until now, somersd has been limited in its ability to calculate confidence intervals for
rank statistics not interpreted as differences between proportions. Such rank statistics
include the Hodges–Lehmann median difference and the Theil median slope, discussed
in Section 6 of Newson (2002), which are expressed in units of a Y –variable, or in Y –
units per X–unit, and are both defined in terms of Somers’ D. The present somersd
package includes a module cendif, which calculates (inefficiently) a robust confidence
interval for the unstratified Hodges–Lehmann median difference, and is discussed in
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Newson (2000b). Work is in progress to address these major limitations of the somersd
package.
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