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Confidence intervals for rank order statistics: Somers’ D, Kendall’s τa and their
differences

Roger Newson (Guy’s, King’s and St Thomas’ School of Medicine)

• Somers’ D and Kendall’s τa

• Why rank order statistics?

• Why confidence intervals?

• The program somersd

• An example (from the auto data)
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Parameters behind “non-parametric” statistics

Suppose (X1, Y1) and (X2, Y2) are sampled independently from the same bivariate population.
Kendall’s τa (the signed difference covariance) is

τXY = E
[
sign(X1 −X2) sign(Y1 − Y2)

]
,

and is the difference between the two probabilities of concordance and discordance.

Somers’ D (the corresponding regression coefficient) is

DY X = τXY /τXX ,

and is the difference between the corresponding conditional probabilities, given unequal X-values.

These parameters are estimated by corresponding sample statistics, which are used to test null
hypotheses. If X is binary, then ranksum tests H0 : DY X = 0.
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Why rank order statistics?

No statistical method is simply “robust”. However, Kendall’s τa and Somers’ D are robust to:

• Extreme values. (These often “throw” classical regression and correlation coefficients.)

• Non-linearity. (They are not affected by monotonic transformations, and can be ±1 for perfect
non-linear relationships.)

They are useful as a preliminary to homing in on a particular regression model. (And losing a
section of the skeptical public, who do not believe the model assumptions.)
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Why confidence intervals?

• They might discourage people from arguing that a high P -value proves a null hypothesis.

• For continuous data, we often have Greiner’s correspondence between Kendall’s τa and Pear-
son’s ρ,

ρ = sin
(π

2
τ
)

.

So, given a CI for τ , we can define an “outlier-resistant” CI for ρ.

• We might want to know CIs for differences, such as

τXY − τWY or DY X −DY W ,

where Y is an outcome variable and W and X are competing predictor variables. This is
because a larger τa cannot be secondary to a smaller τa.
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Greiner’s relation: ρ = sin
(

π
2 τ

)

• This holds under the bivariate
normal distribution, and many
other continuous distributions.

• It therefore saves the labour of
hunting for a pair of transforma-
tions.

• Kendall’s τ is less vulnerable than
Pearson’s ρ to “outliers”.

• However, τ is “less impressive”.
(τ = ±1/3 when ρ = ±1/2, and
τ = ±1/2 when ρ = ±1/

√
2.)
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somersd - A program to calculate confidence intervals for rank order statistics

• Calculates jackknife confidence intervals for either Somers’ D or Kendall’s τa, between one
variable X and a list of others Y (1) . . . Y (p).

• Offers a choice of transformations: Fisher’s z, Daniels’ arcsine, Greiner’s ρ, and the z-
transform of Greiner’s ρ.

• A cluster() option is available (mostly for measuring intra-class correlation, eg between twin
sisters).

• Estimation results are saved as for a model fit, so differences can be estimated using lincom.
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Example: Weight and fuel consumption in US and non-US cars (1)

In the auto data set, we use somersd (instead of ranksum) to assess US origin as a predictor
of fuel consumption (gallons/mile) and weight (lbs.). We use Fisher’s z-transform to compute
asymmetric confidence limits for the two Somers’ Ds:

. somersd us gpm weight,tran(z)
Somers’ D
Transformation: Fisher’s z
Valid observations: 74
------------------------------------------------------------------------------

| Jackknife
us | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------
gpm | .4937249 .1708551 2.890 0.004 .1588551 .8285947

weight | .9749561 .1908547 5.108 0.000 .6008878 1.349024
------------------------------------------------------------------------------
95% CI for untransformed Somers’ D

Somers_D Minimum Maximum
gpm .45716783 .15753219 .67972072

weight .75087413 .53768098 .87382282

We note that US cars (usually) are heavier than the rest, and consume more fuel per mile.
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Example: Weight and fuel consumption in US and non-US cars (2)

Using lincom, we can show that US origin predicts weight better than it predicts fuel consump-
tion. We estimate the difference (in z-units) between the two positive z-transformed Somers’ D
values:

. lincom weight-gpm

( 1) - gpm + weight = 0.0
------------------------------------------------------------------------------

us | Coef. Std. Err. z P>|z| [95% Conf. Interval]
---------+--------------------------------------------------------------------

(1) | .4812312 .1235452 3.895 0.000 .2390871 .7233753
------------------------------------------------------------------------------

The difference is positive. So, given two cars, one consuming fewer gallons to move more weight,
the other consuming more gallons to move less weight, the first (the more efficient one) is more
likely to be US-made.
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Example: Weight and fuel consumption in US and non-US cars (3)
• Data points are US models (“O”)

and non-US models (“X”).

• Given two models, one moving
more mass with less gas, the other
moving less mass with more gas,
the first is more likely to be a US
model.

• Using somersd, we can show this
without contentious assumptions
such as linearity, because the dif-
ference between the two Somers’
Ds depends entirely on such dis-
concordant pairs.
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