parmest and extensions

With examples from the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort study at Bristol University, UK http://www.bristol.ac.uk/alspac/

Roger B. Newson r.newson@imperial.ac.uk http://www.imperial.ac.uk/nhli/r.newson/

National Heart and Lung Institute Imperial College London

14th UK Stata Users' Group Meeting, 8–9 September, 2008 Downloadable from the conference website at http://ideas.repec.org/s/boc/usug08.html

- The parmest package (Newson, 2003)[3] has been downloadable from SSC since 1998.
- ▶ It contains 4 modules: the original parmest, and the additional parmby, metaparm and parmcip.
- ► These are used to produce output datasets (or resultssets), with 1 observation for each of a set of estimated statistical parameters.
- The essential variables are the parameter identification variables, and the parameter estimate, standard error, and (optionally) degrees of freedom.
- ► Usually, there are also derived variables, containing confidence limits, *t* or *z*-test statistics, and *P*-values.
- ► And other variables may also be added, containing other parameter attributes.

- The parmest package (Newson, 2003)[3] has been downloadable from SSC since 1998.
- ▶ It contains 4 modules: the original parmest, and the additional parmby, metaparm and parmcip.
- ► These are used to produce output datasets (or resultssets), with 1 observation for each of a set of estimated statistical parameters.
- The essential variables are the parameter identification variables, and the parameter estimate, standard error, and (optionally) degrees of freedom.
- ► Usually, there are also derived variables, containing confidence limits, *t* or *z*-test statistics, and *P*-values.
- ► And other variables may also be added, containing other parameter attributes.

- The parmest package (Newson, 2003)[3] has been downloadable from SSC since 1998.
- ► It contains 4 modules: the original parmest, and the additional parmby, metaparm and parmcip.
- ► These are used to produce output datasets (or resultssets), with 1 observation for each of a set of estimated statistical parameters.
- The essential variables are the parameter identification variables, and the parameter estimate, standard error, and (optionally) degrees of freedom.
- ► Usually, there are also derived variables, containing confidence limits, *t* or *z*-test statistics, and *P*-values.
- ► And other variables may also be added, containing other parameter attributes.

- The parmest package (Newson, 2003)[3] has been downloadable from SSC since 1998.
- ► It contains 4 modules: the original parmest, and the additional parmby, metaparm and parmcip.
- These are used to produce output datasets (or resultssets), with 1 observation for each of a set of estimated statistical parameters.
- The essential variables are the parameter identification variables, and the parameter estimate, standard error, and (optionally) degrees of freedom.
- ► Usually, there are also derived variables, containing confidence limits, *t* or *z*-test statistics, and *P*-values.
- ► And other variables may also be added, containing other parameter attributes.

- The parmest package (Newson, 2003)[3] has been downloadable from SSC since 1998.
- ► It contains 4 modules: the original parmest, and the additional parmby, metaparm and parmcip.
- ► These are used to produce output datasets (or resultssets), with 1 observation for each of a set of estimated statistical parameters.
- The essential variables are the parameter identification variables, and the parameter estimate, standard error, and (optionally) degrees of freedom.
- ► Usually, there are also derived variables, containing confidence limits, *t* or *z*-test statistics, and *P*-values.
- And other variables may also be added, containing other parameter attributes.

- The parmest package (Newson, 2003)[3] has been downloadable from SSC since 1998.
- ► It contains 4 modules: the original parmest, and the additional parmby, metaparm and parmcip.
- ► These are used to produce output datasets (or resultssets), with 1 observation for each of a set of estimated statistical parameters.
- The essential variables are the parameter identification variables, and the parameter estimate, standard error, and (optionally) degrees of freedom.
- ► Usually, there are also derived variables, containing confidence limits, *t* or *z*-test statistics, and *P*-values.
- And other variables may also be added, containing other parameter attributes.

- The parmest package (Newson, 2003)[3] has been downloadable from SSC since 1998.
- ► It contains 4 modules: the original parmest, and the additional parmby, metaparm and parmcip.
- ► These are used to produce output datasets (or resultssets), with 1 observation for each of a set of estimated statistical parameters.
- The essential variables are the parameter identification variables, and the parameter estimate, standard error, and (optionally) degrees of freedom.
- ► Usually, there are also derived variables, containing confidence limits, *t* or *z*-test statistics, and *P*-values.
- And other variables may also be added, containing other parameter attributes.

Creating a typical parmest resultsset

In the auto data, a regression model is fitted, predicting car weight from repair record. The parmest command creates a resultsset in memory, overwriting the original data.

. sysuse auto (1978 Automob), d bile	clear; e Data)					
. xi: regress i.rep78	s we	eight i.rep _Irep78_	78, nohead; 1-5	(natural	ly coded;	_Irep78_1 om	itted)
weight		Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
_Irep78_2 _Irep78_3 _Irep78_4 _Irep78_5 _cons		253.75 199 -230 -777.2727 3100	574.2138 530.436 541.3739 558.3338 513.5924	0.44 0.38 -0.42 -1.39 6.04	0.660 0.709 0.672 0.169 0.000	-893.3739 -860.6676 -1311.519 -1892.673 2073.981	1400.874 1258.668 851.5187 338.1273 4126.019

. parmest, label norestore escal(N);

A typical parmest resultsset: Essential variables

These are the parameter name, estimate, standard error, and degrees of freedom.

. list parm estimate stderr dof, clean noobs;

estimate	stderr	dof
253.75	574.21376	64
199	530.43595	64
-230	541.37392	64
-777.27273	558.3338	64
3100	513.5924	64
	estimate 253.75 199 -230 -777.27273 3100	estimate stderr 253.75 574.21376 199 530.43595 -230 541.37392 -777.27273 558.3338 3100 513.5924

A typical parmest resultsset: Test statistics and P-values

The variables $t \mbox{ and } p$ are derived from the estimate, standard error, and degrees of freedom.

. list parm estimate stderr dof t p, clean noobs;

parm	estimate	stderr	dof	t	р
_Irep78_2	253.75	574.21376	64	.4419086	.660045
_Irep78_3	199	530.43595	64	.37516311	.70877962
_Irep78_4	-230	541.37392	64	42484499	.67237463
_Irep78_5	-777.27273	558.3338	64	-1.3921291	.16870208
_cons	3100	513.5924	64	6.0359149	8.796e-08

A typical parmest resultsset: 95 percent confidence limits

The variables min95 and max95 are also derived from the estimate, standard error, and degrees of freedom.

. list parm estimate stderr dof min95 max95, clean noobs;

parm	estimate	stderr	dof	min95	max95
_Irep78_2	253.75	574.21376	64	-893.37386	1400.8739
_Irep78_3	199	530.43595	64	-860.66763	1258.6676
_Irep78_4	-230	541.37392	64	-1311.5187	851.51874
_Irep78_5	-777.27273	558.3338	64	-1892.6727	338.12727
_cons	3100	513.5924	64	2073.9812	4126.0188

A typical parmest resultsset: Optional extras

label contains the parameter variable label. es_1 contains the estimation result e(N) (the sample number).

. list parm estimate stderr dof label es_1, clean noobs;

parm	estimate	stderr	dof	label	es_1
_Irep78_2	253.75	574.21376	64	rep78==2	69
_Irep78_3	199	530.43595	64	rep78==3	69
_Irep78_4	-230	541.37392	64	rep78==4	69
_Irep78_5	-777.27273	558.3338	64	rep78==5	69
_cons	3100	513.5924	64	Constant	69

A typical parmest resultsset: Summary of variables

The SSC package descsave is an extended version of describe. Here, it is used to list the variables of the parmest resultsset.

. descsave, list(name type varlab, clean noobs subvar abbr(32));

variable name	storage type	variable label
parm	str9	Parameter name
label	str8	Parameter label
estimate	double	Parameter estimate
stderr	double	SE of parameter estimate
dof	byte	Degrees of freedom
t	double	t-test statistic
р	double	P-value
min95	double	Lower 95% confidence limit
max95	double	Upper 95% confidence limit
es_1	byte	e(N)

- parmest resultssets can be saved to memory (overwriting the original dataset) and/or listed and/or saved to disk files and/or subsetted and/or merged and/or concatenated with other resultssets, creating new resultssets.
- ▶ They can also be used to create tables of results, using the SSC package listtex.
- ► *However*, a principal advantage of resultssets is that the results can be plotted, using Stata graphics programs.
- Also, a resultsset with multiple P-values (possibly from a genome scan) can be input into a selection of multiple-test procedures, using the SSC package smileplot (Newson *et al.*, 2003)[2].
- Also, we can derive resultssets containing results for linear combinations and transformations of parameters, using the metaparm and parmcip modules of parmest.

- parmest resultssets can be saved to memory (overwriting the original dataset) and/or listed and/or saved to disk files and/or subsetted and/or merged and/or concatenated with other resultssets, creating new resultssets.
- They can also be used to create tables of results, using the SSC package listtex.
- ► *However*, a principal advantage of resultssets is that the results can be plotted, using Stata graphics programs.
- Also, a resultsset with multiple P-values (possibly from a genome scan) can be input into a selection of multiple-test procedures, using the SSC package smileplot (Newson *et al.*, 2003)[2].
- Also, we can derive resultssets containing results for linear combinations and transformations of parameters, using the metaparm and parmcip modules of parmest.

- parmest resultssets can be saved to memory (overwriting the original dataset) and/or listed and/or saved to disk files and/or subsetted and/or merged and/or concatenated with other resultssets, creating new resultssets.
- They can also be used to create tables of results, using the SSC package listtex.
- However, a principal advantage of resultssets is that the results can be plotted, using Stata graphics programs.
- Also, a resultsset with multiple P-values (possibly from a genome scan) can be input into a selection of multiple-test procedures, using the SSC package smileplot (Newson *et al.*, 2003)[2].
- Also, we can derive resultssets containing results for linear combinations and transformations of parameters, using the metaparm and parmcip modules of parmest.

- parmest resultssets can be saved to memory (overwriting the original dataset) and/or listed and/or saved to disk files and/or subsetted and/or merged and/or concatenated with other resultssets, creating new resultssets.
- They can also be used to create tables of results, using the SSC package listtex.
- However, a principal advantage of resultssets is that the results can be plotted, using Stata graphics programs.
- Also, a resultsset with multiple P-values (possibly from a genome scan) can be input into a selection of multiple-test procedures, using the SSC package smileplot (Newson *et al.*, 2003)[2].
- Also, we can derive resultssets containing results for linear combinations and transformations of parameters, using the metaparm and parmcip modules of parmest.

- parmest resultssets can be saved to memory (overwriting the original dataset) and/or listed and/or saved to disk files and/or subsetted and/or merged and/or concatenated with other resultssets, creating new resultssets.
- They can also be used to create tables of results, using the SSC package listtex.
- However, a principal advantage of resultssets is that the results can be plotted, using Stata graphics programs.
- Also, a resultsset with multiple P-values (possibly from a genome scan) can be input into a selection of multiple-test procedures, using the SSC package smileplot (Newson *et al.*, 2003)[2].
- Also, we can derive resultssets containing results for linear combinations and transformations of parameters, using the metaparm and parmcip modules of parmest.

- parmest resultssets can be saved to memory (overwriting the original dataset) and/or listed and/or saved to disk files and/or subsetted and/or merged and/or concatenated with other resultssets, creating new resultssets.
- They can also be used to create tables of results, using the SSC package listtex.
- However, a principal advantage of resultssets is that the results can be plotted, using Stata graphics programs.
- Also, a resultsset with multiple P-values (possibly from a genome scan) can be input into a selection of multiple-test procedures, using the SSC package smileplot (Newson *et al.*, 2003)[2].
- Also, we can derive resultssets containing results for linear combinations and transformations of parameters, using the metaparm and parmcip modules of parmest.

- In the Avon Longitudinal Study of Parents and Children (ALSPAC), mothers of 12008 children completed a food frequency questionnaire (FFQ) on their diet during pregnancy
- ► 5 dietary pattern scores were derived from the FFQ data, using principal component analysis (Northstone *et al.*, 2008)[4].
- Associations were measured (using linear or logistic regression) with 22 child disease outcomes, implying 22 × 5 = 110 associations.
- Each of these associations was measured with adjustment for 3 nested confounder sets, described as "None" (unadjusted), "All" (adjusted for the full list of confounders), and "Non-causal" (adjusted for a restricted subset of confounders).
- The confidence intervals, t- or z-statistics, and P-values were saved in parmest resultssets, plotted, and entered into multiple-test procedures.

- In the Avon Longitudinal Study of Parents and Children (ALSPAC), mothers of 12008 children completed a food frequency questionnaire (FFQ) on their diet during pregnancy.
- ► 5 dietary pattern scores were derived from the FFQ data, using principal component analysis (Northstone *et al.*, 2008)[4].
- Associations were measured (using linear or logistic regression) with 22 child disease outcomes, implying 22 × 5 = 110 associations.
- Each of these associations was measured with adjustment for 3 nested confounder sets, described as "None" (unadjusted), "All" (adjusted for the full list of confounders), and "Non-causal" (adjusted for a restricted subset of confounders).
- The confidence intervals, t- or z-statistics, and P-values were saved in parmest resultssets, plotted, and entered into multiple-test procedures.

- In the Avon Longitudinal Study of Parents and Children (ALSPAC), mothers of 12008 children completed a food frequency questionnaire (FFQ) on their diet during pregnancy.
- ► 5 dietary pattern scores were derived from the FFQ data, using principal component analysis (Northstone *et al.*, 2008)[4].
- Associations were measured (using linear or logistic regression) with 22 child disease outcomes, implying 22 × 5 = 110 associations.
- Each of these associations was measured with adjustment for 3 nested confounder sets, described as "None" (unadjusted), "All" (adjusted for the full list of confounders), and "Non-causal" (adjusted for a restricted subset of confounders).
- The confidence intervals, t- or z-statistics, and P-values were saved in parmest resultssets, plotted, and entered into multiple-test procedures.

- In the Avon Longitudinal Study of Parents and Children (ALSPAC), mothers of 12008 children completed a food frequency questionnaire (FFQ) on their diet during pregnancy.
- ► 5 dietary pattern scores were derived from the FFQ data, using principal component analysis (Northstone *et al.*, 2008)[4].
- Associations were measured (using linear or logistic regression) with 22 child disease outcomes, implying 22 × 5 = 110 associations.
- Each of these associations was measured with adjustment for 3 nested confounder sets, described as "None" (unadjusted), "All" (adjusted for the full list of confounders), and "Non-causal" (adjusted for a restricted subset of confounders).
- The confidence intervals, t- or z-statistics, and P-values were saved in parmest resultssets, plotted, and entered into multiple-test procedures.

- In the Avon Longitudinal Study of Parents and Children (ALSPAC), mothers of 12008 children completed a food frequency questionnaire (FFQ) on their diet during pregnancy.
- ► 5 dietary pattern scores were derived from the FFQ data, using principal component analysis (Northstone *et al.*, 2008)[4].
- Associations were measured (using linear or logistic regression) with 22 child disease outcomes, implying 22 × 5 = 110 associations.
- Each of these associations was measured with adjustment for 3 nested confounder sets, described as "None" (unadjusted), "All" (adjusted for the full list of confounders), and "Non-causal" (adjusted for a restricted subset of confounders).
- The confidence intervals, t- or z-statistics, and P-values were saved in parmest resultssets, plotted, and entered into multiple-test procedures.

- In the Avon Longitudinal Study of Parents and Children (ALSPAC), mothers of 12008 children completed a food frequency questionnaire (FFQ) on their diet during pregnancy.
- ► 5 dietary pattern scores were derived from the FFQ data, using principal component analysis (Northstone *et al.*, 2008)[4].
- Associations were measured (using linear or logistic regression) with 22 child disease outcomes, implying 22 × 5 = 110 associations.
- Each of these associations was measured with adjustment for 3 nested confounder sets, described as "None" (unadjusted), "All" (adjusted for the full list of confounders), and "Non-causal" (adjusted for a restricted subset of confounders).
- The confidence intervals, t- or z-statistics, and P-values were saved in parmest resultssets, plotted, and entered into multiple-test procedures.

Histograms of test statistics for 110 diet–disease associations

- ►
- ► The 2 sets of
- ► Therefore, the unadjusted

Graphs by Confounder set

Histograms of test statistics for 110 diet-disease associations

- The unadjusted test statistics (top panel) have more extreme values than would be expected by chance in 110 associations.
- The 2 sets of confounder-adjusted test statistics, by contrast, look "standard Normal".
- Therefore, the unadjusted associations are not due to chance, but *may* be due to confounding.

Histograms of test statistics for 110 diet-disease associations

- The unadjusted test statistics (top panel) have more extreme values than would be expected by chance in 110 associations.
- The 2 sets of confounder-adjusted test statistics, by contrast, look "standard Normal".
- Therefore, the unadjusted associations are not due to chance, but *may* be due to confounding.

Histograms of test statistics for 110 diet-disease associations

- The unadjusted test statistics (top panel) have more extreme values than would be expected by chance in 110 associations.
- The 2 sets of confounder-adjusted test statistics, by contrast, look "standard Normal".
- Therefore, the unadjusted associations are not due to chance, but *may* be due to confounding.

- parmest inputs the current set of estimation results, and outputs a resultsset with 1 observation per estimated parameter.
- parmby executes an estimation command once for each of a set of by-groups, and outputs a resultsset with 1 observation per parameter per by-group.
- metaparm inputs an existing resultsset containing 1 observation for each of a set of uncorrelated parameters, and outputs a new resultsset, containing results for linear combinations of these parameters. Applications include meta-analyses, and also confidence intervals for differences (or ratios) between parameters from independent sets of estimation results.
- parmcip does the low-level work. It inputs an existing resultsset containing estimates, standard errors and (optionally) degrees of freedom, and adds new variables, containing *t*- or *z*-statistics, *P*-values, and confidence limits.

- parmest inputs the current set of estimation results, and outputs a resultsset with 1 observation per estimated parameter.
- parmby executes an estimation command once for each of a set of by-groups, and outputs a resultsset with 1 observation per parameter per by-group.
- metaparm inputs an existing resultsset containing 1 observation for each of a set of uncorrelated parameters, and outputs a new resultsset, containing results for linear combinations of these parameters. Applications include meta-analyses, and also confidence intervals for differences (or ratios) between parameters from independent sets of estimation results.
- parmcip does the low-level work. It inputs an existing resultsset containing estimates, standard errors and (optionally) degrees of freedom, and adds new variables, containing *t*- or *z*-statistics, *P*-values, and confidence limits.

- parmest inputs the current set of estimation results, and outputs a resultsset with 1 observation per estimated parameter.
- parmby executes an estimation command once for each of a set of by-groups, and outputs a resultsset with 1 observation per parameter per by-group.
- metaparm inputs an existing resultsset containing 1 observation for each of a set of uncorrelated parameters, and outputs a new resultsset, containing results for linear combinations of these parameters. Applications include meta-analyses, and also confidence intervals for differences (or ratios) between parameters from independent sets of estimation results.
- parmcip does the low-level work. It inputs an existing resultsset containing estimates, standard errors and (optionally) degrees of freedom, and adds new variables, containing *t*- or *z*-statistics, *P*-values, and confidence limits.

- parmest inputs the current set of estimation results, and outputs a resultsset with 1 observation per estimated parameter.
- parmby executes an estimation command once for each of a set of by-groups, and outputs a resultsset with 1 observation per parameter per by-group.
- metaparm inputs an existing resultsset containing 1 observation for each of a set of uncorrelated parameters, and outputs a new resultsset, containing results for linear combinations of these parameters. Applications include meta-analyses, and also confidence intervals for differences (or ratios) between parameters from independent sets of estimation results.
- parmcip does the low-level work. It inputs an existing resultsset containing estimates, standard errors and (optionally) degrees of freedom, and adds new variables, containing *t*- or *z*-statistics, *P*-values, and confidence limits.

- parmest inputs the current set of estimation results, and outputs a resultsset with 1 observation per estimated parameter.
- parmby executes an estimation command once for each of a set of by-groups, and outputs a resultsset with 1 observation per parameter per by-group.
- metaparm inputs an existing resultsset containing 1 observation for each of a set of uncorrelated parameters, and outputs a new resultsset, containing results for linear combinations of these parameters. Applications include meta-analyses, and also confidence intervals for differences (or ratios) between parameters from independent sets of estimation results.
- parmcip does the low-level work. It inputs an existing resultsset containing estimates, standard errors and (optionally) degrees of freedom, and adds new variables, containing *t*- or *z*-statistics, *P*-values, and confidence limits.

metaparm example: Unequal-variance *t*-tests in the auto data

- metaparm inputs an existing resultsset, with 1 observation for each of a set of uncorrelated parameter estimates.
- ▶ It outputs a new resultsset, with 1 observation for each by-group in the input resultsset, and data on a linear combination of the parameters in the by-group, with weightings defined by a Stata aweight or iweight expression.
- It can be used to estimate weighted arithmetic or geometric mean parameters for a meta-analysis, or differences (or ratios) between parameter pairs, or differences between differences (or ratios between ratios), sometimes called "interactions".
- We will demonstrate metaparm by calculating confidence intervals for mean differences between weights in car groups, using unequal-variance *t*-tests.
- metaparm inputs an existing resultsset, with 1 observation for each of a set of uncorrelated parameter estimates.
- ▶ It outputs a new resultsset, with 1 observation for each by-group in the input resultsset, and data on a linear combination of the parameters in the by-group, with weightings defined by a Stata aweight or iweight expression.
- It can be used to estimate weighted arithmetic or geometric mean parameters for a meta-analysis, or differences (or ratios) between parameter pairs, or differences between differences (or ratios between ratios), sometimes called "interactions".
- We will demonstrate metaparm by calculating confidence intervals for mean differences between weights in car groups, using unequal-variance *t*-tests.

- metaparm inputs an existing resultsset, with 1 observation for each of a set of uncorrelated parameter estimates.
- ► It outputs a new resultsset, with 1 observation for each by-group in the input resultsset, and data on a linear combination of the parameters in the by-group, with weightings defined by a Stata aweight or iweight expression.
- It can be used to estimate weighted arithmetic or geometric mean parameters for a meta-analysis, or differences (or ratios) between parameter pairs, or differences between differences (or ratios between ratios), sometimes called "interactions".
- We will demonstrate metaparm by calculating confidence intervals for mean differences between weights in car groups, using unequal-variance *t*-tests.

- metaparm inputs an existing resultsset, with 1 observation for each of a set of uncorrelated parameter estimates.
- ► It outputs a new resultsset, with 1 observation for each by-group in the input resultsset, and data on a linear combination of the parameters in the by-group, with weightings defined by a Stata aweight or iweight expression.
- It can be used to estimate weighted arithmetic or geometric mean parameters for a meta-analysis, or differences (or ratios) between parameter pairs, or differences between differences (or ratios between ratios), sometimes called "interactions".
- We will demonstrate metaparm by calculating confidence intervals for mean differences between weights in car groups, using unequal-variance *t*-tests.

- metaparm inputs an existing resultsset, with 1 observation for each of a set of uncorrelated parameter estimates.
- It outputs a new resultsset, with 1 observation for each by-group in the input resultsset, and data on a linear combination of the parameters in the by-group, with weightings defined by a Stata aweight or iweight expression.
- It can be used to estimate weighted arithmetic or geometric mean parameters for a meta-analysis, or differences (or ratios) between parameter pairs, or differences between differences (or ratios between ratios), sometimes called "interactions".
- We will demonstrate metaparm by calculating confidence intervals for mean differences between weights in car groups, using unequal-variance *t*-tests.

Creating a resultsset with 1 observation per car group

In the auto data, we define a new variable odd, indicating odd- or even-numbered cars. We then use parmby to create a resultsset with 1 observation for each of 4 car groups, defined by odd and foreign, and data on mean weights in these car groups.

. sysuse auto, clear; (1978 Automobile Data)

- . gene byte odd=mod(_n,2);
- . lab def odd 0 "Even" 1 "Odd";
- . lab val odd odd;
- . lab var odd "Odd or even numbered car";
- . parmby "mean weight", by(odd foreign) norestore;

parmby produces a lot of output (not shown), and also a resultsset in the memory.

Creating a metaparm resultsset with data on mean differences

We list the new resultsset, with data on 4 car group mean weights. Then we replace it with a new metaparm resultsset, with 1 observation per value of odd, and data on mean weight differences between non-US and US cars with that value of odd. Note the non-integer degrees of freedom for unequal-variance *t*-tests (Satterthwaite, 1946)[5], which metaparm uses as the default.

. list odd foreign estimate stderr dof min95 max95, clean noobs;

odd	foreign	estimate	stderr	dof	min95	max95
Even	Domestic	3200.7692	131.7234	25	2929.4798	3472.0586
Even	Foreign	2321.8182	154.14762	10	1978.3559	2665.2805
Odd	Domestic	3433.4615	139.65886	25	3145.8287	3721.0943
Odd	Foreign	2310	109.66063	10	2065.6609	2554.3391

. metaparm [iwei=(foreign==1)-(foreign==0)], by(odd) norestore;

. list odd estimate stderr dof min95 max95 p, clean noobs;

p	max95	min95	dof	stderr	estimate	odd
.00021402	-461.0743	-1296.8278	24.673902	202.76228	-878.95105	Even
3.466e-07	-762.40233	-1484.5207	33.49731	177.56704	-1123.4615	Odd

The odd-even difference between foreign-US differences

Finally, we use metaparm again to create a new resultsset, containing the odd-even difference between the foreign-US differences, and stored in a temporary file. This resultsset is appended to the original resultsset, and given a third value of odd, and the combined resultsset of mean weight differences is listed.

```
. tempfile tf1;
```

```
.metaparm [iwei=(odd==1)-(odd==0)], saving('"'ff1'"', replace);
(note: file C:\DOCUME-1\rnewson\LOCALS-1\Temp\ST_070000e.tmp saved
file C:\DOCUME-1\rnewson\LOCALS-1\Temp\ST_070000e.tmp saved
```

```
. append using `"`tf1'"';
. replace odd=2 if missing(odd);
(1 real change made)
```

. lab def odd 2 "Odd - Even", modify;

. list odd estimate stderr dof min95 max95 p, clean noobs;

p	max95	min95	dof	stderr	estimate	odd
.00021402	-461.0743	-1296.8278	24.673902	202.76228	-878.95105	Even
3.466e-07	-762.40233	-1484.5207	33.49731	177.56704	-1123.4615	Odd
.36835197	295.90869	-784.92967	53.746839	269.5229	-244.51049)dd - Even

- This plot was produced using the SSC package eclplot.
- Unsurprisingly, non–US cars are lighter (on average) than US cars, whether they are odd– or even–numbered.
- However, the population odd-even difference between foreign-US differences may be zero.

- This plot was produced using the SSC package eclplot.
- Unsurprisingly, non–US cars are lighter (on average) than US cars, whether they are odd– or even–numbered.
- However, the population odd-even difference between foreign-US differences may be zero.

- This plot was produced using the SSC package eclplot.
- Unsurprisingly, non–US cars are lighter (on average) than US cars, whether they are odd– or even–numbered.
- However, the population odd-even difference between foreign-US differences may be zero.

- This plot was produced using the SSC package eclplot.
- Unsurprisingly, non–US cars are lighter (on average) than US cars, whether they are odd– or even–numbered.
- However, the population odd-even difference between foreign-US differences may be zero.

- ► The parmcip module inputs existing variables containing estimates, standard errors, and (optionally) degrees of freedom.
- ▶ It produces new variables in the same dataset, containing confidence intervals, *t*− or *z*−test statistics, and *P*−values.
- ▶ The parmest, parmby and metaparm modules all call parmcip to calculate their confidence intervals, test statistics and *P*-values.
- ▶ *However*, parmcip can also be used alone, as we will show.

- The parmcip module inputs existing variables containing estimates, standard errors, and (optionally) degrees of freedom.
- ▶ It produces new variables in the same dataset, containing confidence intervals, *t* or *z*-test statistics, and *P*-values.
- ▶ The parmest, parmby and metaparm modules all call parmcip to calculate their confidence intervals, test statistics and *P*-values.
- ▶ *However*, parmcip can also be used alone, as we will show.

- The parmcip module inputs existing variables containing estimates, standard errors, and (optionally) degrees of freedom.
- ► It produces new variables in the same dataset, containing confidence intervals, *t* or *z*-test statistics, and *P*-values.
- The parmest, parmby and metaparm modules all call parmcip to calculate their confidence intervals, test statistics and *P*-values.
- ▶ *However*, parmcip can also be used alone, as we will show.

- The parmcip module inputs existing variables containing estimates, standard errors, and (optionally) degrees of freedom.
- ► It produces new variables in the same dataset, containing confidence intervals, *t* or *z*-test statistics, and *P*-values.
- ► The parmest, parmby and metaparm modules all call parmcip to calculate their confidence intervals, test statistics and *P*-values.
- ▶ *However*, parmcip can also be used alone, as we will show.

- The parmcip module inputs existing variables containing estimates, standard errors, and (optionally) degrees of freedom.
- ► It produces new variables in the same dataset, containing confidence intervals, *t* or *z*-test statistics, and *P*-values.
- ► The parmest, parmby and metaparm modules all call parmcip to calculate their confidence intervals, test statistics and *P*-values.
- ► *However*, parmcip can also be used alone, as we will show.

- ► A typical 2–allele polymorphism has a commoner allele *A*, a rarer allele *a*, and possible genotypes *AA*, *Aa* and *aa*, with population prevalences *P*_{AA}, *P*_{Aa} and *P*_{aa}, respectively.
- An important parameter is the geometric mean (GM) homozygote/heterozygote ratio (Lindley, 1988)[1], defined as

$$H = \sqrt{P_{AA}P_{aa}}/P_{Aa}$$

and is equal to 0.5 if the maternal and paternal alleles of a population member are statistically independent, and greater than (less than) 0.5 if the maternal and paternal alleles are positively (negatively) correlated.

▶ If *H* = 0.5 (as with random mating), then the 2–allele polymorphism is said to be in **Hardy–Weinberg equilibrium**.

- ► A typical 2–allele polymorphism has a commoner allele *A*, a rarer allele *a*, and possible genotypes *AA*, *Aa* and *aa*, with population prevalences *P*_{AA}, *P*_{Aa} and *P*_{aa}, respectively.
- An important parameter is the geometric mean (GM) homozygote/heterozygote ratio (Lindley, 1988)[1], defined as

$$H = \sqrt{P_{AA}P_{aa}}/P_{Aa}$$

and is equal to 0.5 if the maternal and paternal alleles of a population member are statistically independent, and greater than (less than) 0.5 if the maternal and paternal alleles are positively (negatively) correlated.

▶ If *H* = 0.5 (as with random mating), then the 2–allele polymorphism is said to be in **Hardy–Weinberg equilibrium**.

- ► A typical 2–allele polymorphism has a commoner allele *A*, a rarer allele *a*, and possible genotypes *AA*, *Aa* and *aa*, with population prevalences *P*_{AA}, *P*_{Aa} and *P*_{aa}, respectively.
- An important parameter is the geometric mean (GM) homozygote/heterozygote ratio (Lindley, 1988)[1], defined as

$$H = \sqrt{P_{AA}P_{aa}}/P_{Aa}$$

and is equal to 0.5 if the maternal and paternal alleles of a population member are statistically independent, and greater than (less than) 0.5 if the maternal and paternal alleles are positively (negatively) correlated.

▶ If *H* = 0.5 (as with random mating), then the 2–allele polymorphism is said to be in **Hardy–Weinberg equilibrium**.

- ► A typical 2–allele polymorphism has a commoner allele *A*, a rarer allele *a*, and possible genotypes *AA*, *Aa* and *aa*, with population prevalences *P*_{AA}, *P*_{Aa} and *P*_{aa}, respectively.
- An important parameter is the geometric mean (GM) homozygote/heterozygote ratio (Lindley, 1988)[1], defined as

$$H = \sqrt{P_{AA}P_{aa}}/P_{Aa}$$

and is equal to 0.5 if the maternal and paternal alleles of a population member are statistically independent, and greater than (less than) 0.5 if the maternal and paternal alleles are positively (negatively) correlated.

► If H = 0.5 (as with random mating), then the 2-allele polymorphism is said to be in Hardy-Weinberg equilibrium.

The sample estimate of the population GM homozygote/heterozygote ratio is the sample GM homozygote/heterozygote ratio, defined as

$$\widehat{H} = \sqrt{N_{AA}N_{aa}}/N_{Aa}$$

where N_{AA} , N_{Aa} and N_{aa} are the sample frequencies of genotypes AA, Aa and aa.

• The sample standard error of $\log \hat{H}$ is

$$\widehat{SE}\left(\log\widehat{H}\right) = \sqrt{1/(4N_{AA}) + 1/(4N_{aa}) + 1/N_{Aa}}$$

and can be used to define confidence intervals for $\log H$, and therefore for H.

The sample estimate of the population GM homozygote/heterozygote ratio is the sample GM homozygote/heterozygote ratio, defined as

$$\widehat{H} = \sqrt{N_{AA}N_{aa}}/N_{Aa}$$

where N_{AA} , N_{Aa} and N_{aa} are the sample frequencies of genotypes AA, Aa and aa.

• The sample standard error of $\log \hat{H}$ is

$$\widehat{SE}\left(\log\widehat{H}\right) = \sqrt{1/(4N_{AA}) + 1/(4N_{aa}) + 1/N_{Aa}}$$

and can be used to define confidence intervals for $\log H$, and therefore for H.

The sample estimate of the population GM homozygote/heterozygote ratio is the sample GM homozygote/heterozygote ratio, defined as

$$\widehat{H} = \sqrt{N_{AA}N_{aa}}/N_{Aa}$$

where N_{AA} , N_{Aa} and N_{aa} are the sample frequencies of genotypes AA, Aa and aa.

• The sample standard error of $\log \hat{H}$ is

$$\widehat{SE}\left(\log\widehat{H}\right) = \sqrt{1/(4N_{AA}) + 1/(4N_{aa}) + 1/N_{Aa}}$$

and can be used to define confidence intervals for $\log H$, and therefore for H.

The sample estimate of the population GM homozygote/heterozygote ratio is the sample GM homozygote/heterozygote ratio, defined as

$$\widehat{H} = \sqrt{N_{AA}N_{aa}}/N_{Aa}$$

where N_{AA} , N_{Aa} and N_{aa} are the sample frequencies of genotypes AA, Aa and aa.

• The sample standard error of $\log \hat{H}$ is

$$\widehat{SE}\left(\log\widehat{H}\right) = \sqrt{1/(4N_{AA}) + 1/(4N_{aa}) + 1/N_{Aa}}$$

and can be used to define confidence intervals for $\log H$, and therefore for H.

- ► In the ALSPAC cohort (14060 children), subsets were genotyped for 18 two-allele polymorphisms.
- ▶ We checked these polymorphisms for Hardy–Weinberg equilibrium, using a dataset with 1 observation per polymorphism, and data on frequencies of genotypes with 0, 1 and 2 copies of the rarer allele.
- ► We calculated the homozygote/heterozygote ratio *H*, the log of *H*/0.5, and the standard error of this log.
- We then used parmcip to calculate confidence limits and P-values for the log of H/0.5.
- ► Finally, we back-transformed the confidence limits, and plotted the confidence intervals for *H*.

- ► In the ALSPAC cohort (14060 children), subsets were genotyped for 18 two-allele polymorphisms.
- ▶ We checked these polymorphisms for Hardy–Weinberg equilibrium, using a dataset with 1 observation per polymorphism, and data on frequencies of genotypes with 0, 1 and 2 copies of the rarer allele.
- ▶ We calculated the homozygote/heterozygote ratio *H*, the log of *H*/0.5, and the standard error of this log.
- We then used parmcip to calculate confidence limits and P-values for the log of H/0.5.
- ► Finally, we back-transformed the confidence limits, and plotted the confidence intervals for *H*.

- ► In the ALSPAC cohort (14060 children), subsets were genotyped for 18 two-allele polymorphisms.
- ► We checked these polymorphisms for Hardy–Weinberg equilibrium, using a dataset with 1 observation per polymorphism, and data on frequencies of genotypes with 0, 1 and 2 copies of the rarer allele.
- ▶ We calculated the homozygote/heterozygote ratio *H*, the log of *H*/0.5, and the standard error of this log.
- We then used parmcip to calculate confidence limits and P-values for the log of H/0.5.
- ► Finally, we back-transformed the confidence limits, and plotted the confidence intervals for *H*.

- ► In the ALSPAC cohort (14060 children), subsets were genotyped for 18 two-allele polymorphisms.
- ► We checked these polymorphisms for Hardy–Weinberg equilibrium, using a dataset with 1 observation per polymorphism, and data on frequencies of genotypes with 0, 1 and 2 copies of the rarer allele.
- ► We calculated the homozygote/heterozygote ratio *H*, the log of *H*/0.5, and the standard error of this log.
- We then used parmcip to calculate confidence limits and P-values for the log of H/0.5.
- ► Finally, we back-transformed the confidence limits, and plotted the confidence intervals for *H*.

- ► In the ALSPAC cohort (14060 children), subsets were genotyped for 18 two-allele polymorphisms.
- ► We checked these polymorphisms for Hardy–Weinberg equilibrium, using a dataset with 1 observation per polymorphism, and data on frequencies of genotypes with 0, 1 and 2 copies of the rarer allele.
- ► We calculated the homozygote/heterozygote ratio *H*, the log of *H*/0.5, and the standard error of this log.
- We then used parmcip to calculate confidence limits and P-values for the log of H/0.5.
- ► Finally, we back-transformed the confidence limits, and plotted the confidence intervals for *H*.

- ► In the ALSPAC cohort (14060 children), subsets were genotyped for 18 two-allele polymorphisms.
- ► We checked these polymorphisms for Hardy–Weinberg equilibrium, using a dataset with 1 observation per polymorphism, and data on frequencies of genotypes with 0, 1 and 2 copies of the rarer allele.
- ► We calculated the homozygote/heterozygote ratio *H*, the log of *H*/0.5, and the standard error of this log.
- We then used parmcip to calculate confidence limits and P-values for the log of H/0.5.
- ► Finally, we back-transformed the confidence limits, and plotted the confidence intervals for *H*.

A dataset with 1 observation per polymorphism

Our input dataset had 1 observation per polymorphism, and data on total numbers of subjects genotyped, and on sample frequencies of subjects with 0, 1 and 2 copies of the rarer allele. The first few lines are listed here.

. list poly N _freq*, clean noobs;

poly	N	_freq0	_freq1	_freq2
rs10183914	8671	3617	3975	1079
rs1806649	8606	4889	3199	518
rs1962142	8763	7154	1528	81
rs2364723	8725	4047	3760	918
rs6706649	8731	6696	1920	115
rs6726395	8692	2580	4323	1789

(This dataset was produced using the SSC packages xcontract, dsconcat and factmerg, together with reshape.)

The code to produce confidence intervals for H

This code produced the variables homhet, containing *H*, and min95 and max95, containing its lower and upper 95% confidence limits.

- . gene double homhet=sqrt(_freq0*_freq2)/_freq1;
- . gene double estimate=log(homhet)-log(0.5);
- . gene stderr=sqrt(1/(4*_freq0) + 1/(4*_freq2) + 1/_freq1);
- . lab var homhet "GM homozygote/heterozygote ratio";
- . lab var estimate "Log (GM homozygote/heterozygote ratio/0.5)";
- . lab var stderr "SE Log (GM homozygote/heterozygote ratio/0.5)";

. parmcip; Note: variable dof not found, normal distribution assumed

```
. foreach Y of var min95 max95 {;
2. replace `Y'=0.5*exp(`Y');
3. };
(18 real changes made)
(18 real changes made)
```

- Confidence intervals for *H*, calculated using parmcip, are plotted for the 18 polymorphisms, with their sample numbers.
- Most of these confidence intervals contain the Hardy–Weinberg value of 0.5.
- ► However, there is a hint of possible "inbreeding" (H > 0.5) for a few polymorphisms.

- Confidence intervals for *H*, calculated using parmcip, are plotted for the 18 polymorphisms, with their sample numbers.
- Most of these confidence intervals contain the Hardy–Weinberg value of 0.5.
- ► However, there is a hint of possible "inbreeding" (H > 0.5) for a few polymorphisms.

- Confidence intervals for *H*, calculated using parmcip, are plotted for the 18 polymorphisms, with their sample numbers.
- Most of these confidence intervals contain the Hardy–Weinberg value of 0.5.
- ► However, there is a hint of possible "inbreeding" (H > 0.5) for a few polymorphisms.

- Confidence intervals for *H*, calculated using parmcip, are plotted for the 18 polymorphisms, with their sample numbers.
- Most of these confidence intervals contain the Hardy–Weinberg value of 0.5.
- ► However, there is a hint of possible "inbreeding" (H > 0.5) for a few polymorphisms.

References

- [1] Lindley D. 1988. Statistical inference concerning Hardy–Weinberg equilibrium. *Bayesian Statistics* **3**: 307–326.
- [2] Newson R. and the ALSPAC Study Team. 2003. Multiple-test procedures and smile plots. *The Stata Journal* 3(2): 109–132.
- [3] Newson R. 2003. Confidence intervals and *P*-values for delivery to the end user. *The Stata Journal* **3(3)**: 245–269.
- [4] Northstone K., Emmett P. and Rogers I. 2008. Dietary patterns in pregnancy and associations with socio-demographic and lifestyle factors. *European Journal of Clinical Nutrition* 62: 471–479.
- [5] Satterthwaite F. E. 1946. An approximate distribution of estimates of variance components. *Biometrics Bulletin* 2(6): 110–114.

This presentation can be downloaded from the conference website at *http://ideas.repec.org/s/boc/usug08.html*

The parmest, descsave, listtex, smileplot, eclplot, xcontract, dsconcat and factmerg packages can be downloaded from SSC, using the ssc command.