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parmest and its resultssets

I The parmest package (Newson, 2003)[3] has been
downloadable from SSC since 1998.

I It contains 4 modules: the original parmest, and the additional
parmby, metaparm and parmcip.

I These are used to produce output datasets (or resultssets), with 1
observation for each of a set of estimated statistical parameters.

I The essential variables are the parameter identification variables,
and the parameter estimate, standard error, and (optionally)
degrees of freedom.

I Usually, there are also derived variables, containing confidence
limits, t– or z–test statistics, and P-values.

I And other variables may also be added, containing other
parameter attributes.
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Creating a typical parmest resultsset

In the auto data, a regression model is fitted, predicting car weight
from repair record. The parmest command creates a resultsset in
memory, overwriting the original data.

. sysuse auto, clear;
(1978 Automobile Data)

. xi: regress weight i.rep78, nohead;
i.rep78 _Irep78_1-5 (naturally coded; _Irep78_1 omitted)
------------------------------------------------------------------------------

weight | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------

_Irep78_2 | 253.75 574.2138 0.44 0.660 -893.3739 1400.874
_Irep78_3 | 199 530.436 0.38 0.709 -860.6676 1258.668
_Irep78_4 | -230 541.3739 -0.42 0.672 -1311.519 851.5187
_Irep78_5 | -777.2727 558.3338 -1.39 0.169 -1892.673 338.1273

_cons | 3100 513.5924 6.04 0.000 2073.981 4126.019
------------------------------------------------------------------------------

. parmest, label norestore escal(N);
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A typical parmest resultsset: Essential variables

These are the parameter name, estimate, standard error, and degrees
of freedom.

. list parm estimate stderr dof, clean noobs;

parm estimate stderr dof
_Irep78_2 253.75 574.21376 64
_Irep78_3 199 530.43595 64
_Irep78_4 -230 541.37392 64
_Irep78_5 -777.27273 558.3338 64

_cons 3100 513.5924 64
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A typical parmest resultsset: Test statistics and P–values

The variables t and p are derived from the estimate, standard error,
and degrees of freedom.

. list parm estimate stderr dof t p, clean noobs;

parm estimate stderr dof t p
_Irep78_2 253.75 574.21376 64 .4419086 .660045
_Irep78_3 199 530.43595 64 .37516311 .70877962
_Irep78_4 -230 541.37392 64 -.42484499 .67237463
_Irep78_5 -777.27273 558.3338 64 -1.3921291 .16870208

_cons 3100 513.5924 64 6.0359149 8.796e-08
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A typical parmest resultsset: 95 percent confidence limits

The variables min95 and max95 are also derived from the estimate,
standard error, and degrees of freedom.

. list parm estimate stderr dof min95 max95, clean noobs;

parm estimate stderr dof min95 max95
_Irep78_2 253.75 574.21376 64 -893.37386 1400.8739
_Irep78_3 199 530.43595 64 -860.66763 1258.6676
_Irep78_4 -230 541.37392 64 -1311.5187 851.51874
_Irep78_5 -777.27273 558.3338 64 -1892.6727 338.12727

_cons 3100 513.5924 64 2073.9812 4126.0188
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A typical parmest resultsset: Optional extras

label contains the parameter variable label. es_1 contains the
estimation result e(N) (the sample number).

. list parm estimate stderr dof label es_1, clean noobs;

parm estimate stderr dof label es_1
_Irep78_2 253.75 574.21376 64 rep78==2 69
_Irep78_3 199 530.43595 64 rep78==3 69
_Irep78_4 -230 541.37392 64 rep78==4 69
_Irep78_5 -777.27273 558.3338 64 rep78==5 69

_cons 3100 513.5924 64 Constant 69
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A typical parmest resultsset: Summary of variables

The SSC package descsave is an extended version of describe.
Here, it is used to list the variables of the parmest resultsset.

. descsave, list(name type varlab, clean noobs subvar abbr(32));

variable name storage type variable label
parm str9 Parameter name
label str8 Parameter label
estimate double Parameter estimate
stderr double SE of parameter estimate
dof byte Degrees of freedom
t double t-test statistic
p double P-value
min95 double Lower 95% confidence limit
max95 double Upper 95% confidence limit
es_1 byte e(N)
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What use are parmest resultssets?

I parmest resultssets can be saved to memory (overwriting the
original dataset) and/or listed and/or saved to disk files and/or
subsetted and/or merged and/or concatenated with other
resultssets, creating new resultssets.

I They can also be used to create tables of results, using the SSC
package listtex.

I However, a principal advantage of resultssets is that the results
can be plotted, using Stata graphics programs.

I Also, a resultsset with multiple P–values (possibly from a
genome scan) can be input into a selection of multiple–test
procedures, using the SSC package smileplot (Newson et al.,
2003)[2].

I Also, we can derive resultssets containing results for linear
combinations and transformations of parameters, using the
metaparm and parmcip modules of parmest.
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Example from the ALSPAC cohort: 110 FFQ diet–disease associations

I In the Avon Longitudinal Study of Parents and Children
(ALSPAC), mothers of 12008 children completed a food
frequency questionnaire (FFQ) on their diet during pregnancy.

I 5 dietary pattern scores were derived from the FFQ data, using
principal component analysis (Northstone et al., 2008)[4].

I Associations were measured (using linear or logistic regression)
with 22 child disease outcomes, implying 22× 5 = 110
associations.

I Each of these associations was measured with adjustment for 3
nested confounder sets, described as “None” (unadjusted), “All”
(adjusted for the full list of confounders), and “Non-causal”
(adjusted for a restricted subset of confounders).

I The confidence intervals, t– or z–statistics, and P–values were
saved in parmest resultssets, plotted, and entered into
multiple–test procedures.
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Histograms of test statistics for 110 diet–disease associations

I The unadjusted test
statistics (top panel) have
more extreme values than
would be expected by
chance in 110
associations.

I The 2 sets of
confounder–adjusted test
statistics, by contrast,
look “standard Normal”.

I Therefore, the unadjusted
associations are not due
to chance, but may be due
to confounding.
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The four component modules of parmest
The parmest package contains 4 component ado–files:

I parmest inputs the current set of estimation results, and
outputs a resultsset with 1 observation per estimated parameter.

I parmby executes an estimation command once for each of a set
of by–groups, and outputs a resultsset with 1 observation per
parameter per by–group.

I metaparm inputs an existing resultsset containing 1 observation
for each of a set of uncorrelated parameters, and outputs a new
resultsset, containing results for linear combinations of these
parameters. Applications include meta–analyses, and also
confidence intervals for differences (or ratios) between
parameters from independent sets of estimation results.

I parmcip does the low–level work. It inputs an existing
resultsset containing estimates, standard errors and (optionally)
degrees of freedom, and adds new variables, containing t– or
z–statistics, P–values, and confidence limits.
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metaparm example: Unequal–variance t–tests in the auto data

I metaparm inputs an existing resultsset, with 1 observation for
each of a set of uncorrelated parameter estimates.

I It outputs a new resultsset, with 1 observation for each by–group
in the input resultsset, and data on a linear combination of the
parameters in the by–group, with weightings defined by a Stata
aweight or iweight expression.

I It can be used to estimate weighted arithmetic or geometric mean
parameters for a meta–analysis, or differences (or ratios)
between parameter pairs, or differences between differences (or
ratios between ratios), sometimes called “interactions”.

I We will demonstrate metaparm by calculating confidence
intervals for mean differences between weights in car groups,
using unequal–variance t–tests.
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Creating a resultsset with 1 observation per car group

In the auto data, we define a new variable odd, indicating odd– or
even–numbered cars. We then use parmby to create a resultsset with
1 observation for each of 4 car groups, defined by odd and
foreign, and data on mean weights in these car groups.

. sysuse auto, clear;
(1978 Automobile Data)

. gene byte odd=mod(_n,2);

. lab def odd 0 "Even" 1 "Odd";

. lab val odd odd;

. lab var odd "Odd or even numbered car";

. parmby "mean weight", by(odd foreign) norestore;

parmby produces a lot of output (not shown), and also a resultsset in
the memory.

parmest and extensions Frame 14 of 25



Creating a metaparm resultsset with data on mean differences

We list the new resultsset, with data on 4 car group mean weights.
Then we replace it with a new metaparm resultsset, with 1
observation per value of odd, and data on mean weight differences
between non–US and US cars with that value of odd. Note the
non–integer degrees of freedom for unequal–variance t–tests
(Satterthwaite, 1946)[5], which metaparm uses as the default.

. list odd foreign estimate stderr dof min95 max95, clean noobs;

odd foreign estimate stderr dof min95 max95
Even Domestic 3200.7692 131.7234 25 2929.4798 3472.0586
Even Foreign 2321.8182 154.14762 10 1978.3559 2665.2805
Odd Domestic 3433.4615 139.65886 25 3145.8287 3721.0943
Odd Foreign 2310 109.66063 10 2065.6609 2554.3391

. metaparm [iwei=(foreign==1)-(foreign==0)], by(odd) norestore;

. list odd estimate stderr dof min95 max95 p, clean noobs;

odd estimate stderr dof min95 max95 p
Even -878.95105 202.76228 24.673902 -1296.8278 -461.0743 .00021402
Odd -1123.4615 177.56704 33.49731 -1484.5207 -762.40233 3.466e-07
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The odd–even difference between foreign–US differences

Finally, we use metaparm again to create a new resultsset,
containing the odd–even difference between the foreign–US
differences, and stored in a temporary file. This resultsset is
appended to the original resultsset, and given a third value of odd,
and the combined resultsset of mean weight differences is listed.

. tempfile tf1;

. metaparm [iwei=(odd==1)-(odd==0)], saving(‘"‘tf1’"’, replace);
(note: file C:\DOCUME~1\rnewson\LOCALS~1\Temp\ST_0700000e.tmp not found)
file C:\DOCUME~1\rnewson\LOCALS~1\Temp\ST_0700000e.tmp saved

. append using ‘"‘tf1’"’;

. replace odd=2 if missing(odd);
(1 real change made)

. lab def odd 2 "Odd - Even", modify;

. list odd estimate stderr dof min95 max95 p, clean noobs;

odd estimate stderr dof min95 max95 p
Even -878.95105 202.76228 24.673902 -1296.8278 -461.0743 .00021402
Odd -1123.4615 177.56704 33.49731 -1484.5207 -762.40233 3.466e-07

Odd - Even -244.51049 269.5229 53.746839 -784.92967 295.90869 .36835197
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Satterthwaite confidence interval plot of foreign–US weight differences

I This plot was produced
using the SSC package
eclplot.

I Unsurprisingly, non–US
cars are lighter (on
average) than US cars,
whether they are odd– or
even–numbered.

I However, the population
odd–even difference
between foreign–US
differences may be zero.
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parmcip: the low–level utility behind the parmest package

I The parmcip module inputs existing variables containing
estimates, standard errors, and (optionally) degrees of freedom.

I It produces new variables in the same dataset, containing
confidence intervals, t– or z–test statistics, and P–values.

I The parmest, parmby and metaparm modules all call
parmcip to calculate their confidence intervals, test statistics
and P–values.

I However, parmcip can also be used alone, as we will show.
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parmcip example: Hardy–Weinberg equilibrium

I A typical 2–allele polymorphism has a commoner allele A, a
rarer allele a, and possible genotypes AA, Aa and aa, with
population prevalences PAA, PAa and Paa, respectively.

I An important parameter is the geometric mean (GM)
homozygote/heterozygote ratio (Lindley, 1988)[1], defined as

H =
√

PAAPaa/PAa

and is equal to 0.5 if the maternal and paternal alleles of a
population member are statistically independent, and greater
than (less than) 0.5 if the maternal and paternal alleles are
positively (negatively) correlated.

I If H = 0.5 (as with random mating), then the 2–allele
polymorphism is said to be in Hardy–Weinberg equilibrium.
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parmcip example: Hardy–Weinberg equilibrium (continued)

I The sample estimate of the population GM
homozygote/heterozygote ratio is the sample GM
homozygote/heterozygote ratio, defined as

Ĥ =
√

NAANaa/NAa

where NAA, NAa and Naa are the sample frequencies of genotypes
AA, Aa and aa.

I The sample standard error of log Ĥ is

ŜE
(

log Ĥ
)

=
√

1/(4NAA) + 1/(4Naa) + 1/NAa

and can be used to define confidence intervals for log H, and
therefore for H.

I This can be done using parmcip in a dataset with one
observation for each of a set of polymorphisms, and data on the 3
sample genotype frequencies.
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ŜE
(

log Ĥ
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ŜE
(

log Ĥ
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Hardy–Weinberg equilibrium in the ALSPAC cohort

I In the ALSPAC cohort (14060 children), subsets were genotyped
for 18 two-allele polymorphisms.

I We checked these polymorphisms for Hardy–Weinberg
equilibrium, using a dataset with 1 observation per
polymorphism, and data on frequencies of genotypes with 0, 1
and 2 copies of the rarer allele.

I We calculated the homozygote/heterozygote ratio H, the log of
H/0.5, and the standard error of this log.

I We then used parmcip to calculate confidence limits and
P–values for the log of H/0.5.

I Finally, we back-transformed the confidence limits, and plotted
the confidence intervals for H.
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A dataset with 1 observation per polymorphism

Our input dataset had 1 observation per polymorphism, and data on
total numbers of subjects genotyped, and on sample frequencies of
subjects with 0, 1 and 2 copies of the rarer allele. The first few lines
are listed here.

. list poly N _freq*, clean noobs;

poly N _freq0 _freq1 _freq2
rs10183914 8671 3617 3975 1079
rs1806649 8606 4889 3199 518
rs1962142 8763 7154 1528 81
rs2364723 8725 4047 3760 918
rs6706649 8731 6696 1920 115
rs6726395 8692 2580 4323 1789

(This dataset was produced using the SSC packages xcontract,
dsconcat and factmerg, together with reshape.)
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The code to produce confidence intervals for H
This code produced the variables homhet, containing H, and min95
and max95, containing its lower and upper 95% confidence limits.

. gene double homhet=sqrt(_freq0*_freq2)/_freq1;

. gene double estimate=log(homhet)-log(0.5);

. gene stderr=sqrt( 1/(4*_freq0) + 1/(4*_freq2) + 1/_freq1 );

. lab var homhet "GM homozygote/heterozygote ratio";

. lab var estimate "Log (GM homozygote/heterozygote ratio/0.5)";

. lab var stderr "SE Log (GM homozygote/heterozygote ratio/0.5)";

. parmcip;
Note: variable dof not found, normal distribution assumed

. foreach Y of var min95 max95 {;
2. replace ‘Y’=0.5*exp(‘Y’);
3. };

(18 real changes made)
(18 real changes made)
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Confidence interval plot of homozygote/heterozygote ratios

I Confidence intervals for
H, calculated using
parmcip, are plotted for
the 18 polymorphisms,
with their sample
numbers.

I Most of these confidence
intervals contain the
Hardy–Weinberg value of
0.5.

I However, there is a hint
of possible “inbreeding”
(H > 0.5) for a few
polymorphisms.
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This presentation can be downloaded from the conference website at
http://ideas.repec.org/s/boc/usug08.html

The parmest, descsave, listtex, smileplot, eclplot,
xcontract, dsconcat and factmerg packages can be
downloaded from SSC, using the ssc command.
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