Imperial College London

The role of Somers' D in propensity modelling

Roger B. Newson r.newson@imperial.ac.uk http://www.imperial.ac.uk/nhli/r.newson/

Department of Primary Care and Public Health, Imperial College London

22nd UK Stata Users' Group Meeting, 8–9 September, 2016 Downloadable from the conference website at http://ideas.repec.org/s/boc/usug16.html

- ▶ We assume that pairs of (*X*, *Y*)–pairs (*X_i*, *Y_i*) and (*X_j*, *Y_j*) are sampled from a specified population of (*X*, *Y*)–pairs, under a specified sampling scheme.
- Kendall's τ_a is defined as the expectation

$$\tau_{XY} = \mathrm{E}[\mathrm{sign}(X_i - X_j)\mathrm{sign}(Y_i - Y_j)],$$

or as the difference between the probabilities of **concordance** and **discordance** between the two (X, Y)-pairs.

► **Somers'** *D* is defined as the ratio

$$D(Y|X) = \tau_{XY}/\tau_{XX},$$

or as the difference between the two corresponding *conditional* probabilities, *given* that one *X*–value is known to be larger than the other *X*–value.

Somers' D has the useful property that a higher-magnitude D(Y|X) cannot be secondary to a lower-magnitude D(W|X).

- ► We assume that pairs of (X, Y)-pairs (X_i, Y_i) and (X_j, Y_j) are sampled from a specified population of (X, Y)-pairs, under a specified sampling scheme.
- Kendall's τ_a is defined as the expectation

$$\tau_{XY} = \mathrm{E}[\mathrm{sign}(X_i - X_j)\mathrm{sign}(Y_i - Y_j)],$$

or as the difference between the probabilities of **concordance** and **discordance** between the two (X, Y)-pairs.

► **Somers'** *D* is defined as the ratio

$$D(Y|X) = \tau_{XY}/\tau_{XX},$$

or as the difference between the two corresponding *conditional* probabilities, *given* that one *X*–value is known to be larger than the other *X*–value.

Somers' D has the useful property that a higher-magnitude D(Y|X) cannot be secondary to a lower-magnitude D(W|X).

- ► We assume that pairs of (X, Y)-pairs (X_i, Y_i) and (X_j, Y_j) are sampled from a specified population of (X, Y)-pairs, under a specified sampling scheme.
- Kendall's τ_a is defined as the expectation

$$\tau_{XY} = \mathrm{E}[\mathrm{sign}(X_i - X_j)\mathrm{sign}(Y_i - Y_j)],$$

or as the difference between the probabilities of **concordance** and **discordance** between the two (X, Y)-pairs.

► **Somers'** *D* is defined as the ratio

$$D(Y|X) = \tau_{XY}/\tau_{XX},$$

or as the difference between the two corresponding *conditional* probabilities, *given* that one *X*–value is known to be larger than the other *X*–value.

Somers' D has the useful property that a higher-magnitude D(Y|X) cannot be secondary to a lower-magnitude D(W|X).

- ► We assume that pairs of (X, Y)-pairs (X_i, Y_i) and (X_j, Y_j) are sampled from a specified population of (X, Y)-pairs, under a specified sampling scheme.
- Kendall's τ_a is defined as the expectation

$$\tau_{XY} = \mathrm{E}[\mathrm{sign}(X_i - X_j)\mathrm{sign}(Y_i - Y_j)],$$

or as the difference between the probabilities of **concordance** and **discordance** between the two (X, Y)-pairs.

► Somers' *D* is defined as the ratio

$$D(Y|X) = \tau_{XY}/\tau_{XX},$$

or as the difference between the two corresponding *conditional* probabilities, *given* that one *X*-value is known to be larger than the other *X*-value.

Somers' D has the useful property that a higher-magnitude D(Y|X) cannot be secondary to a lower-magnitude D(W|X).

- ► We assume that pairs of (X, Y)-pairs (X_i, Y_i) and (X_j, Y_j) are sampled from a specified population of (X, Y)-pairs, under a specified sampling scheme.
- Kendall's τ_a is defined as the expectation

$$\tau_{XY} = \mathrm{E}[\mathrm{sign}(X_i - X_j)\mathrm{sign}(Y_i - Y_j)],$$

or as the difference between the probabilities of **concordance** and **discordance** between the two (X, Y)-pairs.

► Somers' *D* is defined as the ratio

$$D(Y|X) = \tau_{XY}/\tau_{XX},$$

or as the difference between the two corresponding *conditional* probabilities, *given* that one *X*-value is known to be larger than the other *X*-value.

► Somers' D has the useful property that a higher-magnitude D(Y|X) cannot be secondary to a lower-magnitude D(W|X).

- The Rubin method of confounder adjustment, in its 21st-century version[6], is a 2-phase method for estimating the causal effect of a proposed intervention, using observational data.
- ► In Phase 1 ("design"), we find a model in the sample data, predicting the **exposure** (which we propose to intervene to change) from **confounders** (expected to be unaffected).
- This model is used to define a propensity score, predicting "exposure-proneness" as a function of the confounders.
- In Phase 2 ("analysis"), we add in the outcome data, and use the propensity score in a regression model to estimate a propensity–adjusted exposure effect on the outcome.
- This adjusted effect is interpreted as a difference between mean outcomes in two scenario populations, with the same propensity distribution, but different exposure levels.
- This is usually done using propensity matching, propensity weighting, or propensity stratification[2].

- ► The Rubin method of confounder adjustment, in its 21st-century version[6], is a 2-phase method for estimating the **causal effect** of a proposed **intervention**, using observational data.
- ► In Phase 1 ("design"), we find a model in the sample data, predicting the **exposure** (which we propose to intervene to change) from **confounders** (expected to be unaffected).
- This model is used to define a propensity score, predicting "exposure-proneness" as a function of the confounders.
- In Phase 2 ("analysis"), we add in the outcome data, and use the propensity score in a regression model to estimate a propensity–adjusted exposure effect on the outcome.
- This adjusted effect is interpreted as a difference between mean outcomes in two scenario populations, with the same propensity distribution, but different exposure levels.
- This is usually done using propensity matching, propensity weighting, or propensity stratification[2].

- ► The Rubin method of confounder adjustment, in its 21st-century version[6], is a 2-phase method for estimating the **causal effect** of a proposed **intervention**, using observational data.
- ► In Phase 1 ("design"), we find a model in the sample data, predicting the **exposure** (which we propose to intervene to change) from **confounders** (expected to be unaffected).
- This model is used to define a propensity score, predicting "exposure-proneness" as a function of the confounders.
- In Phase 2 ("analysis"), we add in the outcome data, and use the propensity score in a regression model to estimate a propensity–adjusted exposure effect on the outcome.
- This adjusted effect is interpreted as a difference between mean outcomes in two scenario populations, with the same propensity distribution, but different exposure levels.
- This is usually done using propensity matching, propensity weighting, or propensity stratification[2].

- ► The Rubin method of confounder adjustment, in its 21st-century version[6], is a 2-phase method for estimating the **causal effect** of a proposed **intervention**, using observational data.
- ► In Phase 1 ("design"), we find a model in the sample data, predicting the **exposure** (which we propose to intervene to change) from **confounders** (expected to be unaffected).
- ► This model is used to define a **propensity score**, predicting "exposure–proneness" as a function of the confounders.
- In Phase 2 ("analysis"), we add in the outcome data, and use the propensity score in a regression model to estimate a propensity–adjusted exposure effect on the outcome.
- This adjusted effect is interpreted as a difference between mean outcomes in two scenario populations, with the same propensity distribution, but different exposure levels.
- This is usually done using propensity matching, propensity weighting, or propensity stratification[2].

- ► The Rubin method of confounder adjustment, in its 21st-century version[6], is a 2-phase method for estimating the **causal effect** of a proposed **intervention**, using observational data.
- ► In Phase 1 ("design"), we find a model in the sample data, predicting the **exposure** (which we propose to intervene to change) from **confounders** (expected to be unaffected).
- ► This model is used to define a **propensity score**, predicting "exposure–proneness" as a function of the confounders.
- In Phase 2 ("analysis"), we add in the outcome data, and use the propensity score in a regression model to estimate a propensity–adjusted exposure effect on the outcome.
- This adjusted effect is interpreted as a difference between mean outcomes in two scenario populations, with the same propensity distribution, but different exposure levels.
- This is usually done using propensity matching, propensity weighting, or propensity stratification[2].

- ► The Rubin method of confounder adjustment, in its 21st-century version[6], is a 2-phase method for estimating the **causal effect** of a proposed **intervention**, using observational data.
- ► In Phase 1 ("design"), we find a model in the sample data, predicting the **exposure** (which we propose to intervene to change) from **confounders** (expected to be unaffected).
- ► This model is used to define a **propensity score**, predicting "exposure–proneness" as a function of the confounders.
- In Phase 2 ("analysis"), we add in the outcome data, and use the propensity score in a regression model to estimate a propensity–adjusted exposure effect on the outcome.
- This adjusted effect is interpreted as a difference between mean outcomes in two scenario populations, with the same propensity distribution, but different exposure levels.
- This is usually done using propensity matching, propensity weighting, or propensity stratification[2].

- ► The Rubin method of confounder adjustment, in its 21st-century version[6], is a 2-phase method for estimating the **causal effect** of a proposed **intervention**, using observational data.
- ► In Phase 1 ("design"), we find a model in the sample data, predicting the **exposure** (which we propose to intervene to change) from **confounders** (expected to be unaffected).
- ► This model is used to define a **propensity score**, predicting "exposure–proneness" as a function of the confounders.
- ► In Phase 2 ("analysis"), we add in the outcome data, and use the propensity score in a regression model to estimate a propensity-adjusted exposure effect on the outcome.
- This adjusted effect is interpreted as a difference between mean outcomes in two scenario populations, with the same propensity distribution, but different exposure levels.
- This is usually done using propensity matching, propensity weighting, or propensity stratification[2].

- The package somersd[5] can be downloaded from SSC, and estimates many versions of Somers' D.
- These may be weighted or matched (using pweights), or within-strata (using the wstrata() option).
- In propensity modelling, we want to limit the level of spurious treatment effect that may remain, after propensity matching and/or weighting and/or stratification.
- A good measure of this limit is Somers' D(W|X), where X is an exposure, W is a confounder or a propensity score, and Somers' D is matched and/or weighted and/or stratified.
- ▶ If *Y* is an outcome, then a higher–magnitude D(Y|X) cannot be secondary to a lower–magnitude D(W|X), defined using the same matching and/or weighting and/or stratification.

- The package somersd[5] can be downloaded from SSC, and estimates many versions of Somers' D.
- These may be weighted or matched (using pweights), or within-strata (using the wstrata() option).
- In propensity modelling, we want to limit the level of spurious treatment effect that may remain, after propensity matching and/or weighting and/or stratification.
- ► A good measure of this limit is Somers' D(W|X), where X is an exposure, W is a confounder or a propensity score, and Somers' D is matched and/or weighted and/or stratified.
- ▶ If *Y* is an outcome, then a higher–magnitude D(Y|X) cannot be secondary to a lower–magnitude D(W|X), defined using the same matching and/or weighting and/or stratification.

- The package somersd[5] can be downloaded from SSC, and estimates many versions of Somers' D.
- These may be weighted or matched (using pweights), or within-strata (using the wstrata() option).
- ► In propensity modelling, we want to limit the level of spurious treatment effect that may remain, after propensity matching and/or weighting and/or stratification.
- ► A good measure of this limit is Somers' D(W|X), where X is an exposure, W is a confounder or a propensity score, and Somers' D is matched and/or weighted and/or stratified.
- ▶ If *Y* is an outcome, then a higher–magnitude D(Y|X) cannot be secondary to a lower–magnitude D(W|X), defined using the same matching and/or weighting and/or stratification.

- The package somersd[5] can be downloaded from SSC, and estimates many versions of Somers' D.
- These may be weighted or matched (using pweights), or within-strata (using the wstrata() option).
- ► In propensity modelling, we want to limit the level of spurious treatment effect that may remain, after propensity matching and/or weighting and/or stratification.
- ► A good measure of this limit is Somers' D(W|X), where X is an exposure, W is a confounder or a propensity score, and Somers' D is matched and/or weighted and/or stratified.
- If Y is an outcome, then a higher-magnitude D(Y|X) cannot be secondary to a lower-magnitude D(W|X), defined using the same matching and/or weighting and/or stratification.

- The package somersd[5] can be downloaded from SSC, and estimates many versions of Somers' D.
- These may be weighted or matched (using pweights), or within-strata (using the wstrata() option).
- ► In propensity modelling, we want to limit the level of spurious treatment effect that may remain, after propensity matching and/or weighting and/or stratification.
- ► A good measure of this limit is Somers' D(W|X), where X is an exposure, W is a confounder or a propensity score, and Somers' D is matched and/or weighted and/or stratified.
- If Y is an outcome, then a higher-magnitude D(Y|X) cannot be secondary to a lower-magnitude D(W|X), defined using the same matching and/or weighting and/or stratification.

- The package somersd[5] can be downloaded from SSC, and estimates many versions of Somers' D.
- These may be weighted or matched (using pweights), or within-strata (using the wstrata() option).
- ► In propensity modelling, we want to limit the level of spurious treatment effect that may remain, after propensity matching and/or weighting and/or stratification.
- ► A good measure of this limit is Somers' D(W|X), where X is an exposure, W is a confounder or a propensity score, and Somers' D is matched and/or weighted and/or stratified.
- ► If *Y* is an outcome, then a higher-magnitude *D*(*Y*|*X*) cannot be secondary to a lower-magnitude *D*(*W*|*X*), defined using the same matching and/or weighting and/or stratification.

- ▶ Under a wide variety of regression models, *D*(*Y*|*X*) can be transformed to give a treatment effect of *X* on *Y*[3].
- ► *For instance*, if *X* and *Y* are both binary, then D(Y|X) is *exactly* the difference Pr(Y = 1|X = 1) Pr(Y = 1|X = 0).
- ► *Similarly*, if *X* is binary, and *Y* is Normally distributed with standard deviation σ in both sub–populations defined by *X*, and -0.5 < D(Y|X) < 0.5, then 2D(Y|X) is *approximately* the standardized mean difference $(\mu_1 \mu_0)/\sigma$.
- ► So, either way, a small Somers' D(W|X) (matched and/or weighted and/or stratified) can be used to give an upper bound to the spurious treatment effect attributable to the confounder (or propensity score) W.
- ► And, a large D(W|X) (matched and/or weighted and/or stratified) indicates a problem of non-overlap, which our matching and/or weighting and/or stratification has not balanced.

- ► Under a wide variety of regression models, D(Y|X) can be transformed to give a treatment effect of X on Y[3].
- ► *For instance*, if *X* and *Y* are both binary, then D(Y|X) is *exactly* the difference Pr(Y = 1|X = 1) Pr(Y = 1|X = 0).
- ► *Similarly*, if *X* is binary, and *Y* is Normally distributed with standard deviation σ in both sub–populations defined by *X*, and -0.5 < D(Y|X) < 0.5, then 2D(Y|X) is *approximately* the standardized mean difference $(\mu_1 \mu_0)/\sigma$.
- So, either way, a small Somers' D(W|X) (matched and/or weighted and/or stratified) can be used to give an upper bound to the spurious treatment effect attributable to the confounder (or propensity score) W.
- ► And, a large D(W|X) (matched and/or weighted and/or stratified) indicates a problem of non-overlap, which our matching and/or weighting and/or stratification has not balanced.

- ► Under a wide variety of regression models, D(Y|X) can be transformed to give a treatment effect of X on Y[3].
- ► *For instance*, if *X* and *Y* are both binary, then D(Y|X) is *exactly* the difference Pr(Y = 1|X = 1) Pr(Y = 1|X = 0).
- ► *Similarly*, if *X* is binary, and *Y* is Normally distributed with standard deviation σ in both sub–populations defined by *X*, and -0.5 < D(Y|X) < 0.5, then 2D(Y|X) is *approximately* the standardized mean difference $(\mu_1 \mu_0)/\sigma$.
- ► So, either way, a small Somers' D(W|X) (matched and/or weighted and/or stratified) can be used to give an upper bound to the spurious treatment effect attributable to the confounder (or propensity score) W.
- ► And, a large D(W|X) (matched and/or weighted and/or stratified) indicates a problem of non-overlap, which our matching and/or weighting and/or stratification has not balanced.

- ► Under a wide variety of regression models, D(Y|X) can be transformed to give a treatment effect of X on Y[3].
- ► For instance, if X and Y are both binary, then D(Y|X) is exactly the difference Pr(Y = 1|X = 1) Pr(Y = 1|X = 0).
- ► *Similarly*, if *X* is binary, and *Y* is Normally distributed with standard deviation σ in both sub–populations defined by *X*, and -0.5 < D(Y|X) < 0.5, then 2D(Y|X) is *approximately* the standardized mean difference $(\mu_1 \mu_0)/\sigma$.
- ► So, either way, a small Somers' D(W|X) (matched and/or weighted and/or stratified) can be used to give an upper bound to the spurious treatment effect attributable to the confounder (or propensity score) W.
- ► And, a large D(W|X) (matched and/or weighted and/or stratified) indicates a problem of non-overlap, which our matching and/or weighting and/or stratification has not balanced.

- ► Under a wide variety of regression models, D(Y|X) can be transformed to give a treatment effect of X on Y[3].
- ► For instance, if X and Y are both binary, then D(Y|X) is exactly the difference Pr(Y = 1|X = 1) Pr(Y = 1|X = 0).
- ► *Similarly*, if *X* is binary, and *Y* is Normally distributed with standard deviation σ in both sub–populations defined by *X*, and -0.5 < D(Y|X) < 0.5, then 2D(Y|X) is *approximately* the standardized mean difference $(\mu_1 \mu_0)/\sigma$.
- ► So, either way, a small Somers' D(W|X) (matched and/or weighted and/or stratified) can be used to give an upper bound to the spurious treatment effect attributable to the confounder (or propensity score) W.
- ► And, a large D(W|X) (matched and/or weighted and/or stratified) indicates a problem of non-overlap, which our matching and/or weighting and/or stratification has not balanced.

- ► Under a wide variety of regression models, D(Y|X) can be transformed to give a treatment effect of X on Y[3].
- ► For instance, if X and Y are both binary, then D(Y|X) is exactly the difference Pr(Y = 1|X = 1) Pr(Y = 1|X = 0).
- ► *Similarly*, if *X* is binary, and *Y* is Normally distributed with standard deviation σ in both sub–populations defined by *X*, and -0.5 < D(Y|X) < 0.5, then 2D(Y|X) is *approximately* the standardized mean difference $(\mu_1 \mu_0)/\sigma$.
- ► So, either way, a small Somers' D(W|X) (matched and/or weighted and/or stratified) can be used to give an upper bound to the spurious treatment effect attributable to the confounder (or propensity score) W.
- ► And, a large D(W|X) (matched and/or weighted and/or stratified) indicates a problem of non-overlap, which our matching and/or weighting and/or stratification has not balanced.

- ▶ We will demonstrate our methods using a dataset distributed by *The Stata Journal* as online supplemental material for an article on propensity matching[1].
- The dataset has 1 observation per subject in a 1970s observational study, in which 185 subjects participated in a job training program and 260 did not.
- ▶ We aim to measure the effect of the training program on 1978 earnings (in 1000s of 1978 dollars), adjusted for a list of 10 confounding covariates, using a logit propensity score computed by the SSC package psmatch2.
- ► We demonstrate propensity adjustment, using matching, weighting, and stratification.
- In Phase 1 of the Rubin method, we check for balance and variance inflation, using the SSC packages somersd and haif[4], respectively.
- And, in Phase 2, we measure the average treatment effect on the treated (ATET), using the SSC package scenttest.

- ► We will demonstrate our methods using a dataset distributed by *The Stata Journal* as online supplemental material for an article on propensity matching[1].
- The dataset has 1 observation per subject in a 1970s observational study, in which 185 subjects participated in a job training program and 260 did not.
- ▶ We aim to measure the effect of the training program on 1978 earnings (in 1000s of 1978 dollars), adjusted for a list of 10 confounding covariates, using a logit propensity score computed by the SSC package psmatch2.
- ► We demonstrate propensity adjustment, using matching, weighting, and stratification.
- In Phase 1 of the Rubin method, we check for balance and variance inflation, using the SSC packages somersd and haif[4], respectively.
- And, in Phase 2, we measure the average treatment effect on the treated (ATET), using the SSC package scenttest.

- ► We will demonstrate our methods using a dataset distributed by *The Stata Journal* as online supplemental material for an article on propensity matching[1].
- The dataset has 1 observation per subject in a 1970s observational study, in which 185 subjects participated in a job training program and 260 did not.
- We aim to measure the effect of the training program on 1978 earnings (in 1000s of 1978 dollars), adjusted for a list of 10 confounding covariates, using a logit propensity score computed by the SSC package psmatch2.
- ► We demonstrate propensity adjustment, using matching, weighting, and stratification.
- In Phase 1 of the Rubin method, we check for balance and variance inflation, using the SSC packages somersd and haif[4], respectively.
- And, in Phase 2, we measure the average treatment effect on the treated (ATET), using the SSC package scenttest.

- ► We will demonstrate our methods using a dataset distributed by *The Stata Journal* as online supplemental material for an article on propensity matching[1].
- The dataset has 1 observation per subject in a 1970s observational study, in which 185 subjects participated in a job training program and 260 did not.
- ► We aim to measure the effect of the training program on 1978 earnings (in 1000s of 1978 dollars), adjusted for a list of 10 confounding covariates, using a logit propensity score computed by the SSC package psmatch2.
- We demonstrate propensity adjustment, using matching, weighting, and stratification.
- In Phase 1 of the Rubin method, we check for balance and variance inflation, using the SSC packages somersd and haif[4], respectively.
- And, in Phase 2, we measure the average treatment effect on the treated (ATET), using the SSC package scenttest.

- ► We will demonstrate our methods using a dataset distributed by *The Stata Journal* as online supplemental material for an article on propensity matching[1].
- The dataset has 1 observation per subject in a 1970s observational study, in which 185 subjects participated in a job training program and 260 did not.
- ► We aim to measure the effect of the training program on 1978 earnings (in 1000s of 1978 dollars), adjusted for a list of 10 confounding covariates, using a logit propensity score computed by the SSC package psmatch2.
- We demonstrate propensity adjustment, using matching, weighting, and stratification.
- In Phase 1 of the Rubin method, we check for balance and variance inflation, using the SSC packages somersd and haif[4], respectively.
- And, in Phase 2, we measure the average treatment effect on the treated (ATET), using the SSC package scenttest.

- ► We will demonstrate our methods using a dataset distributed by *The Stata Journal* as online supplemental material for an article on propensity matching[1].
- The dataset has 1 observation per subject in a 1970s observational study, in which 185 subjects participated in a job training program and 260 did not.
- ► We aim to measure the effect of the training program on 1978 earnings (in 1000s of 1978 dollars), adjusted for a list of 10 confounding covariates, using a logit propensity score computed by the SSC package psmatch2.
- We demonstrate propensity adjustment, using matching, weighting, and stratification.
- In Phase 1 of the Rubin method, we check for balance and variance inflation, using the SSC packages somersd and haif[4], respectively.
- And, in Phase 2, we measure the average treatment effect on the treated (ATET), using the SSC package scenttest.

- ► We will demonstrate our methods using a dataset distributed by *The Stata Journal* as online supplemental material for an article on propensity matching[1].
- ► The dataset has 1 observation per subject in a 1970s observational study, in which 185 subjects participated in a job training program and 260 did not.
- ► We aim to measure the effect of the training program on 1978 earnings (in 1000s of 1978 dollars), adjusted for a list of 10 confounding covariates, using a logit propensity score computed by the SSC package psmatch2.
- We demonstrate propensity adjustment, using matching, weighting, and stratification.
- In Phase 1 of the Rubin method, we check for balance and variance inflation, using the SSC packages somersd and haif[4], respectively.
- And, in Phase 2, we measure the average treatment effect on the treated (ATET), using the SSC package scenttest.

The ldw_exper data

And here are the variables, after compressing and adding variable labels:

. desc, fu;

Contains da obs: vars: size:	ata	from ldw_ 445 12 9,345	exper.dta		7 Apr 2004 21:48
variable na	ame	storage type	display format	value label	variable label
t age educ black hisp married nodegree re74 re75		byte byte byte byte byte byte float	<pre>%16.0g %8.0g %8.0g %8.0g %8.0g %8.0g %8.0g %8.0g %8.0g %8.0g %9.0g %9.0g %9.0g %9.0g</pre>	t	Participation in the job training program Age Years of education Indicator for African-American Indicator for Hispanic Indicator for married Indicator for > grade school but < high-school Earnings in 1974 (1000s of 1978 \$) Earnings in 1975 (1000s of 1978 \$)
re78 u74 u75		float byte byte	%9.0g %9.0g %9.0g		Earnings in 1978 (1000s of 1978 \$) Indicator for unemployed in 1974 Indicator for unemployed in 1975

Sorted by:

The outcome is re78, the exposure is t, and the other 10 are confounders.

Adding propensity scores and weights using psmatch2

We use the SSC package psmatch2, with the logit option (output omitted):

. psmatch2 t age educ black hisp married nodegree re74 re75 u74 u75, logit;

This adds some new underscored variables, of which the most important are a propensity score and a weight:

. desc _pscore	e _weight,	fu;		
variable name	storage type	display format	value label	variable label
_pscore _weight	double double	%10.0g %10.0g		psmatch2: Propensity Score psmatch2: weight of matched controls

The weight is 1 for trainees, missing for unmatched controls, and equal to number of matched trainees for matched controls.

Balance checks for propensity matching

To compute the *unadjusted* Somers' *D* of the propensity score and confounding covariates with repect to exposure to training, we use the somersd command:

somersd t _pscore age educ black hisp married nodegree re74 re75 u74 u75, tdist;

To compute sensible matching weights for balance checks, we recall that matching is a special case of weighting, with zero weights for unmatched controls:

```
gene matchwei=cond(missing(_weight),0,_weight);
lab var matchwei "Propensity-matching weight";
```

We can now do balance checks for matching by computing *adjusted* Somers' *D* statistics, weighted by the matching weight:

```
somersd t _pscore age educ black hisp married nodegree re74 re75 u74 u75
[pwei=matchwei], tdist;
```

Both somersd commands generate output for 11 parameter estimates, which we will omit. *However*...

- we can plot the two types of Somers' D and see instantly how well matching has balanced the covariates.
- Matching has balanced the propensity score well, but *not* all the component covariates.
- Note that confidence limits and *P*-values are not really interesting here.

- ... we can plot the two types of Somers' D and see instantly how well matching has balanced the covariates.
- Matching has balanced the propensity score well, but *not* all the component covariates.
- Note that confidence limits and *P*-values are not really interesting here.

- ... we can plot the two types of Somers' D and see instantly how well matching has balanced the covariates.
- Matching has balanced the propensity score well, but *not* all the component covariates.
- Note that confidence limits and *P*-values are not really interesting here.

- ... we can plot the two types of Somers' D and see instantly how well matching has balanced the covariates.
- Matching has balanced the propensity score well, but *not* all the component covariates.
- Note that confidence limits and *P*-values are not really interesting here.

Variance inflation for propensity matching

The *costs* of matching are summarized using the haif package[4], which measures how much propensity-matching would inflate the required sample number and the confidence interval widths for an equal-variance regression, *assuming* that propensity-matching was not really necessary:

```
. haif t, pweight(matchwei);
Number of observations: 445
Homoskedastic adjustment inflation factors
for variances and standard errors:
Variance SE
t 1.989675 1.410558
__cons 3.38057 1.838633
```

We see that the variance and standard error of the treatment effect t may be greatly inflated. This is not surprising, as matching discards a lot of controls, and weights the others unequally. *However*...

Proceeding to Phase 2 after propensity matching

... if we decide to proceed to Phase 2 after all, and add in the outcome (earnings in 1978 Kdollars), then we use a regression command:

```
regress re78 t [pweight=matchwei], vce(robust);
```

This produces some alien–looking output (omitted), but we then use the scenttest command to do a scenario *t*–test, comparing treated and untreated scenarios in trainees and their matched controls:

<pre>. scenttest, at(t=0) atzero(t=1); Scenario 0: t=1 Scenario 1: t=0 Confidence intervals for the arithmetic means under Scenario 0 and Scenario 1 and for their comparison (arithmetic mean difference) Total number of observations used: 295</pre>									
local number o	lotal number of observations used: 295								
	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]			
Scenario_0 Scenario_1 Comparison	6.349145 4.207207 2.141939	.5788231 .4140692 .7116808	10.97 10.16 3.01	0.000 0.000 0.003	5.209967 3.39228 .7412844	7.488323 5.022134 3.542593			

We see that these subjects are expected to earn 6.349K dollars if trained, or 4.207K dollars if untrained. The difference is 2.142K dollars (95% CI, 0.741K to 3.543K dollars).

Balance checks for propensity weighting

On the other hand, we might decide *not* to proceed to Phase 2, and to ask ourselves whether we should use weighting instead of matching, in order to use *all* the controls. To compute sensible ATET weights for balance checks, we compute weights to be equal to 1 for treated subjects, and to the exposure odds for control subjects:

```
gene atetwei=cond(t==1,1,_pscore/(1-_pscore));
lab var atetwei "Propensity weight for ATET";
```

We can now do balance checks for weighting by computing Somers' *D* statistics, weighted by the ATET propensity weights:

somersd t _pscore age educ black hisp married nodegree re74 re75 u74 u75
[pwei=atetwei], tdist;

Again, we will omit the command output.

- This time, the weighted Somers' D values are much closer to zero than the unadjusted ones.
- This is the case for the propensity score *and* for the component covariates.
- So, the possibilities for spurious exposure-outcome associations are limited, if we use weighting to compute ATETs.

- This time, the weighted Somers' D values are much closer to zero than the unadjusted ones.
- This is the case for the propensity score *and* for the component covariates.
- So, the possibilities for spurious exposure-outcome associations are limited, if we use weighting to compute ATETs.

- This time, the weighted Somers' D values are much closer to zero than the unadjusted ones.
- ► This is the case for the propensity score *and* for the component covariates.
- So, the possibilities for spurious exposure-outcome associations are limited, if we use weighting to compute ATETs.

- This time, the weighted Somers' D values are much closer to zero than the unadjusted ones.
- ► This is the case for the propensity score *and* for the component covariates.
- So, the possibilities for spurious exposure-outcome associations are limited, if we use weighting to compute ATETs.

Variance inflation for propensity weighting

When we measure the *costs* of weighting using haif, the results are again encouraging:

. haif t, pweight(atetwei); Number of observations: 445 Homoskedastic adjustment inflation factors for variances and standard errors: Variance SE t 1.098882 1.048276 __cons 1.237852 1.112588

We see that the variance and standard error of the treatment effect t will only be 10 percent and 5 percent larger, respectively, even if the propensity weighting is not really necessary. This is a benefit of using *all* the controls.

Proceeding to Phase 2 after propensity weighting

This time, we might have better reason to proceed to Phase 2, and add in the outcome (earnings in 1978 Kdollars), again using a weighted regression command:

```
regress re78 t [pweight=atetwei], vce(robust);
```

Again, we omit the regression output, and use scenttest to do a scenario *t*-test on the ATET:

<pre>. scenttest, at(t=0) atzero(t=1); Scenario 0: t=1 Scenario 1: t=0 Confidence intervals for the arithmetic means under Scenario 0 and Scenario 1 and for their comparison (arithmetic mean difference) Total number of observations used: 445</pre>								
	(Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]	
Scenario_0 Scenario_1 Comparison	6.3 4.5 1.7	49145 94593 54553	.5781584 .3984515 .7021615	10.98 11.53 2.50	0.000 0.000 0.013	5.212871 3.811503 .3745712	7.485419 5.377683 3.134534	

This time, subjects like the trained ones are expected to earn 6.349K dollars if trained, or 4.595K dollars if untrained. The difference is 1.755K dollars (95% CI, 0.375K to 3.135K dollars).

Balance checks for propensity stratification

Alternatively, we might use propensity stratification. The strata will be quintiles, which are thought by some to be a fine enough stratification most of the time. For this, we use xtile:

```
xtile propgp=_pscore, nq(5);
lab var propgp "Propensity group";
```

This time, we do balance checks for stratification by computing Somers' *D* statistics, limited to within-strata comparisons by the wstrata() option:

somersd t _pscore age educ black hisp married nodegree re74 re75 u74 u75, tdist wstrata(propgp);

Again, we will omit the command output.

- The stratified Somers' D values are close to zero for the component covariates.
- However, the Somers' D for the propensity score is suspiciously positive.
- This suggests that there is residual exposure–propensity association within the quintiles, implying that 5 equal groups are not enough after all.

- The stratified Somers' D values are close to zero for the component covariates.
- However, the Somers' D for the propensity score is suspiciously positive.
- This suggests that there is residual exposure–propensity association within the quintiles, implying that 5 equal groups are not enough after all.

- The stratified Somers' D values are close to zero for the component covariates.
- ► *However*, the Somers' *D* for the propensity score is suspiciously positive.
- This suggests that there is residual exposure–propensity association within the quintiles, implying that 5 equal groups are not enough after all.

- The stratified Somers' D values are close to zero for the component covariates.
- ► *However*, the Somers' *D* for the propensity score is suspiciously positive.
- This suggests that there is residual exposure-propensity association within the quintiles, implying that 5 equal groups are not enough after all.

Variance inflation for propensity stratification

This time, we measure the *costs* of stratification using the haifcomp module of haif, and a generated unit variable const:

We see that the variance and standard error of the treatment effect t will only be 6 percent and 3 percent larger, respectively, if the propensity stratification is not really necessary. Note that we are assuming a non-interactive regression model. *However*...

Proceeding to Phase 2 after propensity stratification

... if we then decide to proceed to Phase 2, and add in the outcome (earnings in 1978 Kdollars), then we should use an *interactive* model:

regress re78 ibn.propgp ibn.propgp#c.t, noconst vce(robust);

This time, there is even more regression output (omitted), as we have a 10-parameter model, with 1 parameter per treatment level per propensity quintile. scenttest summarizes the ATET:

<pre>. scenttest, at(t=0) atzero(t=1) subpop(if t==1); Scenario 0: t=1 Scenario 1: t=0 Confidence intervals for the arithmetic means under Scenario 0 and Scenario 1 and for their comparison (arithmetic mean difference) Total number of observations used: 445</pre>								
	(Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]	
Scenario_0 Scenario_1 Comparison	6.3 4.4 1.8	49145 98153 50993	.5811033 .3630063 .6851676	10.93 12.39 2.70	0.000 0.000 0.007	5.207026 3.784689 .5043419	7.491265 5.211617 3.197643	

This time, the trained subjects are expected to earn 6.349K dollars if trained, or 4.498K dollars if untrained. The difference is 1.851K dollars (95% CI, 0.504K to 3.198K dollars).

- Here are the unadjusted, matched, weighted and stratified Somers' D parameters, for the propensity score and component covariates.
- Of the 3 adjustment methods, weighting seems best at balancing the propensity score and the component covariates.
- Propensity weighting therefore seems to be the "best buy".

- Here are the unadjusted, matched, weighted and stratified Somers' D parameters, for the propensity score and component covariates.
- Of the 3 adjustment methods, weighting seems best at balancing the propensity score and the component covariates
- Propensity weighting therefore seems to be the "best buy".

- Here are the unadjusted, matched, weighted and stratified Somers' D parameters, for the propensity score and component covariates.
- Of the 3 adjustment methods, weighting seems best at balancing the propensity score and the component covariates.
- Propensity weighting therefore seems to be the "best buy".

- Here are the unadjusted, matched, weighted and stratified Somers' D parameters, for the propensity score and component covariates.
- Of the 3 adjustment methods, weighting seems best at balancing the propensity score and the component covariates.
- Propensity weighting therefore seems to be the "best buy".

- The costs of adjustment are measured using the variance and SE inflation factors.
- The *benefits* of adjustment are measured using reduction in Somers' D of propensity score with respect to exposure.
- Again, propensity weighting seems to be the "best buy".

- The *costs* of adjustment are measured using the variance and SE inflation factors.
- The *benefits* of adjustment are measured using reduction in Somers' D of propensity score with respect to exposure.
- Again, propensity weighting seems to be the "best buy".

- The costs of adjustment are measured using the variance and SE inflation factors.
- The *benefits* of adjustment are measured using reduction in Somers' D of propensity score with respect to exposure.
- Again, propensity weighting seems to be the "best buy".

- The *costs* of adjustment are measured using the variance and SE inflation factors.
- The *benefits* of adjustment are measured using reduction in Somers' D of propensity score with respect to exposure.
- Again, propensity weighting seems to be the "best buy".

References

- [1] Abadie, A., Drukker, D., Leber Herr, J. and Imbens, G. W. 2004. Implementing matching estimators for average treatment effects in Stata. *The Stata Journal* **4**(3): 290–311.
- [2] Guo, S. and Fraser, M. W. 2014. Propensity score analysis. Second edition. Los Angeles, CA: Sage.
- [3] Newson, R. B. 2015. Somers' D: A common currency for associations. Presented at the 21st UK Stata User Meeting, 10–11 September, 2015. Downloadable from the conference website at http://ideas.repec.org/p/boc/usug15/01.html
- [4] Newson, R. B. 2009. Homoskedastic adjustment inflation factors in model selection. Presented at the 15th UK Stata User Meeting, 10-11 September, 2009. Downloadable from the conference website at http://ideas.repec.org/p/boc/usug09/15.html
- [5] Newson, R. 2006. Confidence intervals for rank statistics: Somers' *D* and extensions. *The Stata Journal* **6(3)**: 309–334.
- [6] Rubin, D. B. 2008. For objective causal inference, design trumps analysis. The Annals of Applied Statistics 2(3): 808–840.

This presentation, and the do-file producing the examples, can be downloaded from the conference website at *http://ideas.repec.org/s/boc/usug16.html*

The packages described and used in this presentation can be downloaded from SSC, using the ssc command.

The role of Somers' D in propensity modelling

Frame 23 of 23 ◀ □ ▷ ◀ 🗗 ▷ ◀ 볼 ▷ ◀ 볼 ▷ 볼 · · 의 속 ⓒ